How motile microorganisms or self-propelled synthetic swimmers interact with a curved surface is crucial in determining their locomotion patterns in complex geometry. We used a self-propelled micrsoswimmer model (i.e., the squirmer) and performed two-dimensional study on the hydrodynamic interaction between the microswimmers and a circular obstacle. We revealed that both pullers and pushers, i.e., the two types of squirmers, may exhibit flower-like paths as they are circling around the obstacle at nonzero Reynolds numbers. Flowers with various shapes and numbers of petals were created by a microswimmer by varying the Reynolds number, squirmer-type parameter, or relative curvature of the obstacle. Moreover, pullers showed quite different dynamical features from their counterparts in terms of their motion direction, swimming speed, and shape of flower-like paths. The possible mechanisms were revealed in detail. In particular, pullers interacting with a large obstacle may attain an enhanced speed. The findings of this study display potential usefulness in micro/nanofluidic applications associated with a collection or separation of microorganisms and artificial mircroswimmer navigation.

1.
T.
Pedley
and
J. O.
Kessler
, “
Hydrodynamic phenomena in suspensions of swimming microorganisms
,”
Annu. Rev. Fluid Mech.
24
,
313
358
(
1992
).
2.
D.
Koch
and
G.
Subramanian
, “
Collective hydrodynamics of swimming microorganisms: Living fluids
,”
Annu. Rev. Fluid Mech.
43
,
637
659
(
2011
).
3.
J.
Elgeti
,
R. G.
Winkler
, and
G.
Gompper
, “
Physics of microswimmers—single particle motion and collective behavior: A review
,”
Rep. Prog. Phys.
78
,
056601
(
2015
).
4.
S.
Ramaswamy
, “
Active fluids
,”
Nat. Rev. Phys.
1
,
640
642
(
2019
).
5.
A. C. H.
Tsang
,
E.
Demir
,
Y.
Ding
, and
O. S.
Pak
, “
Roads to smart artificial microswimmers
,”
Adv. Intell. Syst.
2
,
1900137
(
2020
).
6.
P.
Sharan
,
A.
Nsamela
,
S. C.
Lesher-Pérez
, and
J.
Simmchen
, “
Microfluidics for microswimmers: Engineering novel swimmers and constructing swimming lanes on the microscale—A tutorial review
,”
Small
17
,
2007403
(
2021
).
7.
Z.
Zou
,
Y.
Liu
,
Y.-N.
Young
,
O. S.
Pak
, and
A. C. H.
Tsang
, “
Gait switching and targeted navigation of microswimmers via deep reinforcement learning
,”
Commun. Phys.
5
,
158
(
2022
).
8.
A. J. T. M.
Mathijssen
,
N.
Figueroa-Morales
,
G.
Junot
,
É.
Clément
,
A.
Lindner
, and
A.
Zöttl
, “
Oscillatory surface rheotaxis of swimming E. coli bacteria
,”
Nat. Commun.
10
,
3434
(
2019
).
9.
R.
Dey
,
C. M.
Buness
,
B. V.
Hokmabad
,
C.
Jin
, and
C. C.
Maass
, “
Oscillatory rheotaxis of artificial swimmers in microchannels
,”
Nat. Commun.
13
,
2952
(
2022
).
10.
E.
Lushi
,
H.
Wioland
, and
R.
Goldstein
, “
Fluid flows generated by swimming bacteria drive self-organization in confined fluid suspensions
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
9733
9738
(
2014
).
11.
C.
Scholz
,
M.
Engel
, and
T.
Pöschel
, “
Rotating robots move collectively and self-organize
,”
Nat. Commun.
9
,
931
(
2018
).
12.
E.
Lauga
,
W. R.
DiLuzio
,
G. M.
Whitesides
, and
H. A.
Stone
, “
Swimming in circles: Motion of bacteria near solid boundaries
,”
Biophys. J.
90
,
400
412
(
2006
).
13.
F.
Kümmel
,
B.
ten Hagen
,
R.
Wittkowski
,
I.
Buttinoni
,
R.
Eichhorn
,
G.
Volpe
,
H.
Löwen
, and
C.
Bechinger
, “
Circular motion of asymmetric self-propelling particles
,”
Phys. Rev. Lett.
110
,
198302
(
2013
).
14.
M.
Polin
,
I.
Tuval
,
K.
Drescher
,
J. P.
Gollub
, and
R. E.
Goldstein
, “
Chlamydomonas swims with two “gears” in a eukaryotic version of run-and-tumble locomotion
,”
Science
325
,
487
490
(
2009
).
15.
H.
Karani
,
G. E.
Pradillo
, and
P. M.
Vlahovska
, “
Tuning the random walk of active colloids: from individual run-and-tumble to dynamic clustering
,”
Phys. Rev. Lett.
123
,
208002
(
2019
).
16.
J.
Hill
,
O.
Kalkanci
,
J. L.
McMurry
, and
H.
Koser
, “
Hydrodynamic surface interactions enable Escherichia coli to seek efficient routes to swim upstream
,”
Phys. Rev. Lett.
98
,
068101
(
2007
).
17.
E.
Perez Ipiña
,
S.
Otte
,
R.
Pontier-Bres
,
D.
Czerucka
, and
F.
Peruani
, “
Bacteria display optimal transport near surfaces
,”
Nat. Phys.
15
,
610
615
(
2019
).
18.
B.
Liebchen
and
H.
Löwen
, “
Optimal navigation strategies for active particles
,”
EPL
127
,
34003
(
2019
).
19.
A. P.
Berke
,
L.
Turner
,
H. C.
Berg
, and
E.
Lauga
, “
Hydrodynamic attraction of swimming microorganisms by surfaces
,”
Phys. Rev. Lett.
101
,
038102
(
2008
).
20.
K.
Ishimoto
and
E. A.
Gaffney
, “
Squirmer dynamics near a boundary
,”
Phys. Rev. E
88
,
062702
(
2013
).
21.
G. J.
Li
and
A. M.
Ardekani
, “
Hydrodynamic interaction of microswimmers near a wall
,”
Phys. Rev. E
90
,
013010
(
2014
).
22.
S. E.
Spagnolie
and
E.
Lauga
, “
Hydrodynamics of self-propulsion near a boundary: Predictions and accuracy of far-field approximations
,”
J. Fluid Mech.
700
,
105
147
(
2012
).
23.
M. J.
Lighthill
, “
On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers
,”
Commun. Pure Appl. Math.
5
,
109
118
(
1952
).
24.
J. R.
Blake
, “
A spherical envelope approach to ciliary propulsion
,”
J. Fluid Mech.
46
,
199
208
(
1971
).
25.
J. R.
Blake
, “
Self propulsion due to oscillations on the surface of a cylinder at low Reynolds number
,”
Bull. Aust. Math. Soc.
5
,
255
264
(
1971
).
26.
D.
Giacché
,
T.
Ishikawa
, and
T.
Yamaguchi
, “
Hydrodynamic entrapment of bacteria swimming near a solid surface
,”
Phys. Rev. E
82
,
056309
(
2010
).
27.
S. M.
Mousavi
,
G.
Gompper
, and
R. G.
Winkler
, “
Wall entrapment of peritrichous bacteria: A mesoscale hydrodynamics simulation study
,”
Soft Matter
16
,
4866
4875
(
2020
).
28.
M.
Molaei
and
J.
Sheng
, “
Succeed escape: Flow shear promotes tumbling of Escherichia coli near a solid surface
,”
Sci. Rep.
6
,
35290
(
2016
).
29.
M.
Molaei
,
M.
Barry
,
R.
Stocker
, and
J.
Sheng
, “
Failed escape: Solid surfaces prevent tumbling of Escherichia coli
,”
Phys. Rev. Lett.
113
,
068103
(
2014
).
30.
K.
Ishimoto
,
E. A.
Gaffney
, and
D. J.
Smith
, “
Squirmer hydrodynamics near a periodic surface topography
,”
Front. Cell Dev. Biol.
11
,
1123446
(
2023
).
31.
J.
Simmchen
,
J.
Katuri
,
W. E.
Uspal
,
M. N.
Popescu
,
M.
Tasinkevych
, and
S.
Sánchez
, “
Topographical pathways guide chemical microswimmers
,”
Nat. Commun.
7
,
10598
(
2016
).
32.
C. K.
Tung
,
F.
Ardon
,
A. G.
Fiore
,
S. S.
Suarez
, and
M.
Wu
, “
Cooperative roles of biological flow and surface topography in guiding sperm migration revealed by a microfluidic model
,”
Lab Chip
14
,
1348
1356
(
2014
).
33.
C.
Kurzthaler
and
H. A.
Stone
, “
Microswimmers near corrugated, periodic surfaces
,”
Soft Matter
17
,
3322
3332
(
2021
).
34.
D.
Takagi
,
J.
Palacci
,
A. B.
Braunschweig
,
M. J.
Shelley
, and
J.
Zhang
, “
Hydrodynamic capture of microswimmers into sphere-bound orbits
,”
Soft Matter
10
,
1784
1789
(
2014
).
35.
O.
Sipos
,
K.
Nagy
,
R.
Di Leonardo
, and
P.
Galajda
, “
Hydrodynamic trapping of swimming bacteria by convex walls
,”
Phys. Rev. Lett.
114
,
258104
(
2015
).
36.
Y.
Takaha
and
D.
Nishiguchi
, “
Quasi-two-dimensional bacterial swimming around pillars: Enhanced trapping efficiency and curvature dependence
,”
Phys. Rev. E
107
,
014602
(
2023
).
37.
S. E.
Spagnolie
,
G. R.
Moreno-Flores
,
D.
Bartolo
, and
E.
Lauga
, “
Geometric capture and escape of a microswimmer colliding with an obstacle
,”
Soft Matter
11
,
3396
3411
(
2015
).
38.
M.
Kuron
,
P.
Stärk
,
C.
Holm
, and
J.
de Graaf
, “
Hydrodynamic mobility reversal of squirmers near flat and curved surfaces
,”
Soft Matter
15
,
5908
5920
(
2019
).
39.
S.
Das
and
A.
Cacciuto
, “
Colloidal swimmers near curved and structured walls
,”
Soft Matter
15
,
8290
8301
(
2019
).
40.
G. J.
Li
, “
Slow motion of a sphere near a sinusoidal surface
,”
J. Fluid Mech.
975
,
A31
(
2023
).
41.
K. V. S.
Chaithanya
and
P. T.
Sumesh
, “
Wall-curvature driven dynamics of a microswimmer
,”
Phys. Rev. Fluids
6
,
083101
(
2021
).
42.
K.
Zheng
,
J.
Wang
,
P.
Zhang
, and
D.
Nie
, “
Study on the motion of squirmers close to a curved boundary
,”
AIP Adv.
13
,
075011
(
2023
).
43.
E. B.
van der Wee
,
B. C.
Blackwell
,
F.
Balboa Usabiaga
,
A.
Sokolov
,
I. T.
Katz
,
B.
Delmotte
, and
M. M.
Driscoll
, “
A simple catch: Fluctuations enable hydrodynamic trapping of microrollers by obstacles
,”
Sci. Adv.
9
,
eade0320
(
2023
).
44.
S.
Ghosh
and
A.
Poddar
, “
Slippery rheotaxis: New regimes for guiding wall-bound microswimmers
,”
J. Fluid Mech.
967
,
A14
(
2023
).
45.
S.
Ghosh
,
S.
Ghoshal
, and
A.
Poddar
, “
Harnessing wall slip towards tunable microswimming in Poiseuille flow
,”
J. Fluid Mech.
997
,
A59
(
2024
).
46.
G.
Guan
,
Y.
Ying
, and
J.
Lin
, “
Effect of the shape of microswimmers and slip boundary conditions on the dynamic characteristics of near-wall microswimmers
,”
J. Fluid Mech.
999
,
A42
(
2024
).
47.
A.
Hamel
,
C.
Fisch
,
L.
Combettes
,
P.
Dupuis-Williams
, and
C. N.
Baroud
, “
Transitions between three swimming gaits in paramecium escape
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
7290
7295
(
2011
).
48.
L. N.
Wickramarathna
,
C.
Noss
, and
A.
Lorke
, “
Hydrodynamic trails produced by Daphnia: Size and energetics
,”
PLoS One
9
,
e92383
(
2014
).
49.
A.
Choudhary
,
S.
Paul
,
F.
Rühle
, and
H.
Stark
, “
How inertial lift affects the dynamics of a microswimmer in Poiseuille flow
,”
Commun. Phys.
5
,
14
(
2022
).
50.
A.
Daddi-Moussa-Ider
,
H.
Löwen
, and
B.
Liebchen
, “
Hydrodynamics can determine the optimal route for microswimmer navigation
,”
Commun. Phys.
4
,
15
(
2021
).
51.
S.
Wang
and
A.
Ardekani
, “
Inertial squirmer
,”
Phys. Fluids
24
,
101902
(
2012
).
52.
A. S.
Khair
and
N. G.
Chisholm
, “
Expansions at small Reynolds numbers for the locomotion of a spherical squirmer
,”
Phys. Fluids
26
,
011902
(
2014
).
53.
N.
Chisholm
,
D.
Legendre
,
E.
Lauga
, and
A.
Khair
, “
A squirmer across Reynolds numbers
,”
J. Fluid Mech.
796
,
233
256
(
2016
).
54.
Y. H.
Qian
,
D.
D'Humières
, and
P.
Lallemand
, “
Lattice BGK models for Navier–Stokes equation
,”
Europhys. Lett.
17
,
479
484
(
1992
).
55.
P.
Lallemand
and
L.-S.
Luo
, “
Lattice Boltzmann method for moving boundaries
,”
J. Comput. Phys.
184
,
406
421
(
2003
).
56.
Y.
Ying
,
T.
Jiang
,
D.
Nie
, and
J.
Lin
, “
Study on the sedimentation and interaction of two squirmers in a vertical channel
,”
Phys. Fluids
34
,
103315
(
2022
).
57.
D.
Nie
,
Y.
Ying
,
G.
Guan
,
J.
Lin
, and
Z.
Ouyang
, “
Two-dimensional study on the motion and interactions of squirmers under gravity in a vertical channel
,”
J. Fluid Mech.
960
,
A31
(
2023
).
58.
C. K.
Aidun
,
Y.
Lu
, and
E.
Ding
, “
Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation
,”
J. Fluid Mech.
373
,
287
311
(
1998
).
59.
R.
Glowinski
,
T.-W.
Pan
,
T. I.
Hesla
,
D. D.
Joseph
, and
J.
Periaux
, “
A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow
,”
J. Comput. Phys.
169
,
363
426
(
2001
).
60.
D.
Papavassiliou
and
G. P.
Alexander
, “
The many-body reciprocal theorem and swimmer hydrodynamics
,”
Europhys. Lett.
110
,
44001
(
2015
).
61.
A. M.
Leshansky
, “
Enhanced low-Reynolds-number propulsion in heterogeneous viscous environments
,”
Phys. Rev. E
80
,
051911
(
2009
).
62.
E.
Lauga
and
T. R.
Powers
, “
The hydrodynamics of swimming microorganisms
,”
Rep. Prog. Phys.
72
,
096601
(
2009
).
63.
H.
Xie
,
M.
Sun
,
X.
Fan
,
Z.
Lin
,
W.
Chen
,
L.
Wang
,
L.
Dong
, and
Q.
He
, “
Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion, and manipulation
,”
Sci. Rob.
4
,
eaav8006
(
2019
).
64.
Q.
Yang
,
L.
Xu
,
W.
Zhong
,
Q.
Yan
,
Y.
Gao
,
W.
Hong
,
Y.
She
, and
G.
Yang
, “
Recent advances in motion control of micro/nanomotors
,”
Adv. Intell. Syst.
2
,
2000049
(
2020
).
65.
S.
Ketzetzi
,
M.
Rinaldin
,
P.
Dröge
,
J.
Graaf
, and
D. J.
Kraft
, “
Activity-induced interactions and cooperation of artificial microswimmers in one-dimensional environments
,”
Nat. Commun.
13
,
1772
(
2022
).
You do not currently have access to this content.