In the present work, a multi-scale model is used to simulate the trajectory of exhaled droplets for different types of respiratory events. By estimating the saliva viral content, information on the exhaled droplet trajectory and size distribution are exploited to derive spatial maps of viral concentration. The maps are used to estimate the risk of infection by direct inhalation for a susceptible individual exposed to exhalations. Discriminating between the droplets falling to the ground and those remaining airborne, further estimates of the risks associated with fomite and airborne transmission routes are made possible. Simulations are based on an analytical model, recently developed by the authors, implementing the equations of droplet transport, evaporation, energy, and chemical composition. Turbulent dispersion is modeled with a random walk approach, whereas the droplets are released randomly within the exhalation time span and mouth/nose orifice cross section. Droplet transport within the respiratory cloud, a critical aspect in this kind of investigation, is evaluated by coupling the analytical model to the results of unsteady computational fluid dynamics simulations of the respiratory scenarios investigated, namely: mouth breathing, nose breathing, speaking, coughing, and sneezing. Results are compared to those obtained in a previous work where the respiratory cloud was simulated through a two-dimensional unsteady empirical model proposed by the authors based on momentum conservation. The multi-scale model provides better predictions of small droplet trajectories albeit at a higher computational cost. The risk maps provided constitute a useful tool for assessing prevention needs in controlling the spread of epidemics.

1.
REHVA
,
REHVA COVID-19 Guidance Document: How to Operate and Use Building Services in Order to Prevent the Spread of the Coronavirus Disease (COVID-19) Virus (SARS-CoV-2) in Workplaces
(
Federation of European Heating, Ventilation and Air Conditioning Associations
,
2020
).
2.
M.
Cavazzuti
and
P.
Tartarini
, “
Statistical analysis of infectious disease transmission risk based on exhaled respiratory droplet trajectory distribution
,”
Phys. Fluids
36
,
063341
(
2024
).
3.
C.
Xu
,
P.
Nielsen
,
L.
Liu
,
R.
Jensen
, and
G.
Gong
, “
Human exhalation characterization with the aid of schlieren imaging technique
,”
Build. Environ.
112
,
190
199
(
2017
).
4.
J.
Tang
,
A.
Nicolle
,
C.
Klettner
,
J.
Pantelic
,
L.
Wang
,
A.
Suhaimi
,
A.
Tan
,
G.
Ong
,
R.
Su
,
C.
Sekhar
,
D.
Cheong
, and
K.
Tham
, “
Airflow dynamics of human jets: Sneezing and breathing - potential sources of infectious aerosols
,”
PLoS One
8
,
e59970
(
2013
).
5.
S.
Verma
,
M.
Dhanak
, and
J.
Frankenfield
, “
Visualizing the effectiveness of face masks in obstructing respiratory jets
,”
Phys. Fluids
32
,
061708
(
2020
).
6.
M.
Puglia
,
F.
Ottani
,
N.
Morselli
,
S.
Pedrazzi
,
G.
Allesina
,
A.
Muscio
,
A.
Cossarizza
, and
P.
Tartarini
, “
Airborne pathogens diffusion: A comparison between tracer gas and pigmented aerosols for indoor environment analysis
,”
Heliyon
10
,
e26076
(
2024
).
7.
L.
Bourouiba
, “
Fluid dynamics of respiratory infectious diseases
,”
Annu. Rev. Biomed. Eng.
23
,
547
577
(
2021
).
8.
F.
Arpino
,
G.
Cortellessa
,
G.
Grossi
, and
H.
Nagano
, “
A Eulerian-Lagrangian approach for the non-isothermal and transient CFD analysis of the aerosol airborne dispersion in a car cabin
,”
Build. Environ.
209
,
108648
(
2022
).
9.
D.
Ramayo
and
S.
Corzo
, “
Airborne transmission risk in urban buses: A computational fluid dynamics study
,”
Aerosol Air Qual. Res.
22
,
210334
(
2022
).
10.
H.
Motamedi
,
M.
Shirzadi
,
Y.
Tominaga
, and
P.
Mirzaei
, “
CFD modeling of airborne pathogen transmission of COVID-19 in confined spaces under different ventilation strategies
,”
Sustain. Cities Soc.
76
,
103397
(
2022
).
11.
V.
Vuorinen
,
M.
Aarnio
,
M.
Alava
,
V.
Alopaeus
,
N.
Atanasova
,
M.
Auvinen
,
N.
Balasubramanian
,
H.
Bordbar
,
P.
Erästö
,
R.
Grande
,
N.
Hayward
,
A.
Hellsten
,
S.
Hostikka
,
J.
Hokkanen
,
O.
Kaario
,
A.
Karvinen
,
I.
Kivistö
,
M.
Korhonen
,
R.
Kosonen
,
J.
Kuusela
,
S.
Lestinen
,
E.
Laurila
,
H.
Nieminen
,
P.
Peltonen
,
J.
Pokki
,
A.
Puisto
,
P.
Råback
,
H.
Salmenjoki
,
T.
Sironen
, and
M.
Österberg
, “
Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors
,”
Safety Sci.
130
,
104866
(
2020
).
12.
L.
Borro
,
L.
Mazzei
,
M.
Raponi
,
P.
Piscitelli
,
A.
Miani
, and
A.
Secinaro
, “
The role of air conditioning in the diffusion of SARS-CoV-2 in indoor environments: A first computational fluid dynamic model, based on investigations performed at the Vatican State Children's Hospital
,”
Environ. Res.
193
,
110343
(
2021
).
13.
G.
Busco
,
S.
Yang
,
J.
Seo
, and
Y.
Hassan
, “
Sneezing and asymptomatic virus transmission
,”
Phys. Fluids
32
,
073309
(
2020
).
14.
C.
Cravero
and
D.
Marsano
, “
Simulation of COVID-19 indoor emissions from coughing and breathing with air conditioning and mask protection effects
,”
Indoor Built Environ.
31
,
1242
1261
(
2022
).
15.
B.
Stiehl
,
R.
Shrestha
,
S.
Schroeder
,
J.
Delgado
,
A.
Bazzi
,
J.
Reyes
,
M.
Kinzel
, and
K.
Ahmed
, “
The effect of relative air humidity on the evaporation timescales of a human sneeze
,”
AIP Adv.
12
,
075210
(
2022
).
16.
D.
Parienta
,
L.
Morawska
,
G.
Johnson
,
Z.
Ristovski
,
M.
Hargreaves
,
K.
Mengersen
,
S.
Corbett
,
C.
Chao
,
Y.
Li
, and
D.
Katoshevski
, “
Theoretical analysis of the motion and evaporation of exhaled respiratory droplet of mixed composition
,”
J. Aerosol Sci.
42
,
1
10
(
2011
).
17.
X.
Xie
,
Y.
Li
,
A.
Chwang
,
P.
Ho
, and
W.
Seto
, “
How far droplets can move in indoor environments – revisiting the Wells evaporation–falling curve
,”
Indoor Air
17
,
211
225
(
2007
).
18.
J.
Redrow
,
S.
Mao
,
I.
Celik
,
J.
Posada
, and
Z.-G.
Feng
, “
Modeling the evaporation and dispersion of airborne sputum droplets expelled from a human cough
,”
Build. Environ.
46
,
2042
2051
(
2011
).
19.
L.
Bourouiba
,
E.
Dehandschoewercker
, and
J.
Bush
, “
Violent expiratory events: On coughing and sneezing
,”
J. Fluid Mech.
745
,
537
563
(
2014
).
20.
S.
Balachandar
,
S.
Zaleski
,
A.
Soldati
,
G.
Ahmadi
, and
L.
Bourouiba
, “
Host-to-host airborne transmission as a multiphase flow problem for science-based social distance guidelines
,”
Int. J. Multiph. Flow
132
,
103439
(
2020
).
21.
V.
D'Alessandro
,
M.
Falone
,
L.
Giammichele
, and
R.
Ricci
, “
A multi-scale approach for modelling airborne transport of mucosalivary fluid
,”
Appl. Sci.
12
,
12381
(
2022
).
22.
M.
Cavazzuti
and
P.
Tartarini
, “
Transport and evaporation of exhaled respiratory droplets: An analytical model
,”
Phys. Fluids
35
,
103327
(
2023
).
23.
K.-W.
To
,
O.-Y.
Tsang
,
C.-Y.
Yip
,
K.-H.
Chan
,
T.-C.
Wu
,
J.-C.
Chan
,
W.-S.
Leung
,
T.-H.
Chik
,
C.-C.
Choi
,
D.
Kandamby
,
D.
Lung
,
A.
Tam
,
R.-S.
Poon
,
A.-F.
Fung
,
I.-N.
Hung
,
V.-C.
Cheng
,
J.-W.
Chan
, and
K.-Y.
Yuen
, “
Consistent detection of 2019 novel coronavirus in saliva
,”
Clin. Infect. Dis.
71
,
841
843
(
2020
).
24.
Y.
Pang
,
D.
Zang
,
P.
Yang
,
L.
Poon
, and
Q.
Wang
, “
Viral load of SARS-CoV-2 in clinical samples
,”
Lancet Infect. Dis.
20
,
411
412
(
2020
).
25.
J.
Kolinski
and
T.
Schneider
, “
Superspreading events suggest aerosol transmission of SARS-CoV-2 by accumulation in enclosed spaces
,”
Phys. Rev. E
103
,
033109
(
2021
).
26.
N.
van Doremalen
,
T.
Bushmaker
,
D.
Morris
,
M.
Holbrook
,
A.
Gamble
,
B.
Williamson
,
A.
Tamin
,
J.
Harcourt
,
N.
Thornburg
,
S.
Gerber
,
J.
Lloyd-Smith
,
E.
de Wit
, and
V.
Munster
, “
Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1
,”
N. Engl. J. Med.
382
,
1564
1567
(
2020
).
27.
J.
Duguid
, “
The size and the duration of air-carriage of respiratory droplets and droplet-nuclei
,”
J. Hygiene
44
,
471
479
(
1946
).
28.
C.
Chao
,
M.
Wan
,
L.
Morawska
,
G.
Johnson
,
Z.
Ristovski
,
M.
Hargreaves
,
K.
Mengersen
,
S.
Corbett
,
Y.
Li
,
X.
Xie
, and
D.
Katoshevski
, “
Characterization of expiration air jets and droplet size distributions immediately at the mouth opening
,”
J. Aerosol Sci.
40
,
122
133
(
2009
).
29.
L.
Morawska
,
G.
Johnson
,
Z.
Ristovski
,
M.
Hargreaves
,
K.
Mengersen
,
S.
Corbett
,
C.
Chao
,
Y.
Li
, and
D.
Katoshevski
, “
Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities
,”
J. Aerosol Sci.
40
,
256
269
(
2009
).
30.
M.
Alsved
,
A.
Matamis
,
R.
Bohlin
,
M.
Richter
,
P.-E.
Bengtsson
,
C.-J.
Fraenkel
,
P.
Medstrand
, and
J.
Löndahl
, “
Exhaled respiratory particles during singing and talking
,”
Aerosol Sci. Technol.
54
,
1245
1248
(
2020
).
31.
M.
Zhang
,
P.
Shrestha
,
X.
Liu
,
T.
Turnaoglu
,
J.
DeGraw
,
D.
Schafer
, and
N.
Love
, “
Computational fluid dynamics simulation of SARS-CoV-2 aerosol dispersion inside a grocery store
,”
Build. Environ.
209
,
108652
(
2022
).
32.
P.
Nielsen
, “
Computational fluid dynamics and room air movement
,”
Indoor Air
14
,
134
143
(
2004
).
33.
ASHRAE
,
ANSI/ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupancy
(
American Society of Heating, Refrigerating and Air-Conditioning Engineers
,
2013
).
34.
H.
Li
,
F.
Leong
,
G.
Xu
,
Z.
Ge
,
C.
Kang
, and
K.
Lim
, “
Dispersion of evaporating cough droplets in tropical outdoor environment
,”
Phys. Fluids
32
,
113301
(
2020
).
35.
J.
Wang
,
F. D.
Barba
,
A.
Roccon
,
G.
Sardina
,
A.
Soldati
, and
F.
Picano
, “
Modelling direct virus exposure risk associated with respiratory events
,”
J. R Soc. Interface
19
,
20210819
(
2022
).
36.
J.
Gupta
,
C.-H.
Lin
, and
Q.
Chen
, “
Flow dynamics and characterization of a cough
,”
Indoor Air
19
,
517
525
(
2009
).
37.
J.
Gupta
,
C.-H.
Lin
, and
Q.
Chen
, “
Characterizing exhaled airflow from breathing and talking
,”
Indoor Air
20
,
31
39
(
2010
).
38.
S.
Zhu
,
S.
Kato
, and
J.-H.
Yang
, “
Study on transport characteristics of saliva droplets produced by coughing in a calm indoor environment
,”
Build. Environ.
41
,
1691
1702
(
2006
).
39.
W.
Schroeder
,
K.
Martin
, and
W.
Lorensen
,
The Visualization Toolkit, an Object Oriented Approach to 3D Graphics
, 3rd ed. (
Kitware Inc
.,
New York
,
2003
).
40.
S.
Asadi
,
A.
Wexler
,
C.
Cappa
,
S.
Barreda
,
N.
Bouvier
, and
W.
Ristenpart
, “
Aerosol emission and superemission during human speech increase with voice loudness
,”
Sci. Rep.
9
,
2348
(
2019
).
41.
R.
Alford
,
J.
Kasel
,
P.
Gerone
, and
V.
Knight
, “
Human influenza resulting from aerosol inhalation
,”
P. Soc. Exp. Biol. Med.
122
,
800
804
(
1966
).
42.
T.
Foat
,
B.
Higgins
,
C.
Abbs
,
T.
Maishman
,
S.
Coldrick
,
A.
Kelsey
,
M.
Ivings
,
S.
Parker
, and
C.
Noakes
, “
Modelling the effect of temperature and relative humidity on exposure to SARS-CoV-2 in a mechanically ventilated room
,”
Indoor Air
32
,
e13146
(
2022
).
43.
E.
Riley
,
G.
Murphy
, and
R.
Riley
, “
Airborne spread of measles in a suburban elementary school
,”
Am. J. Epidemiol.
107
,
421
432
(
1978
).
You do not currently have access to this content.