This experimental work investigates the impact dynamics of drops on vertically oriented, three-dimensional-printed (3D-printed) fiber arrays with variations in packing density, fiber arrangement, and wettability. These fiber arrays are inspired by mammalian fur, and while not wholly representative of the entire morphological range of fur, they do reside within its spectrum. We define an aspect ratio, a modified fiber porosity relative to the drop size, that characterizes various impact regimes. Using energy conservation, we derive a model relating drop penetration depth in vertical fibers to the Weber number. In sparse fibers where the Ohnesorge number is less than 4×103, penetration depth scales linearly with the impact Weber number. In hydrophobic fibers, density reduces penetration depth when the contact angle is sufficiently high. Hydrophilic arrays have greater penetration than their hydrophobic counterparts due to capillarity, a result that contrasts the drop impact-initiated infiltration of horizontal fibers. Vertical capillary infiltration of the penetrated liquid is observed whenever the Bond number is less than 0.11. For hydrophilic fibers, we predict that higher density will promote drop penetration when the contact angle is sufficiently low. Complete infiltration by the drop is achieved at sufficient times regardless of drop impact velocity.

1.
T. J.
Dawson
,
K. N.
Webster
, and
S. K.
Maloney
, “
The fur of mammals in exposed environments; do crypsis and thermal needs necessarily conflict? the polar bear and marsupial koala compared
,”
J. Comp. Physiol. B
184
,
273
284
(
2014
).
2.
W.
Montagna
, “
Comparative anatomy and physiology of the skin
,”
Arch. Dermatol.
96
,
357
363
(
1967
).
3.
D.
Mota-Rojas
,
C. G.
Titto
,
A.
de Mira Geraldo
,
J.
Martínez-Burnes
,
J.
Gómez
,
I.
Hernández-Ávalos
,
A.
Casas
,
A.
Domínguez
,
N.
José
,
A.
Bertoni
et al, “
Efficacy and function of feathers, hair, and glabrous skin in the thermoregulation strategies of domestic animals
,”
Animals
11
,
3472
(
2021
).
4.
H. E.
Liwanag
,
A.
Berta
,
D. P.
Costa
,
M.
Abney
, and
T. M.
Williams
, “
Morphological and thermal properties of mammalian insulation: The evolution of fur for aquatic living
,”
Biol. J. Linn. Soc.
106
,
926
939
(
2012
).
5.
I. M.
Baker
, “
Infrared antenna-like structures in mammalian fur
,”
Roy. Soc. Open Sci.
8
,
210740
(
2021
).
6.
A. K.
Dickerson
,
Z. G.
Mills
, and
D. L.
Hu
, “
Wet mammals shake at tuned frequencies to dry
,”
J. R Soc. Interface
9
,
3208
3218
(
2012
).
7.
T. D.
Williams
,
D. D.
Allen
,
J. M.
Groff
, and
R. L.
Glass
, “
An analysis of California sea otter (enhydra lutris) pelage and integument
,”
Mar. Mammal Sci.
8
,
1
18
(
1992
).
8.
R.
Tregear
, “
Hair density, wind speed, and heat loss in mammals
,”
J. Appl. Physiol.
20
,
796
801
(
1965
).
9.
E. R.
Oyer
, “
Identification of mammals from studies of hair structure
,”
Trans. Kansas Acad. Sci.
49
,
155
160
(
1946
).
10.
P.
Soppela
,
M.
Nieminen
, and
J.
Timisjärvi
, “
Thermoregulation in reindeer
,”
Rangifer
6
,
273
278
(
1986
).
11.
A.
Domínguez-Oliva
,
M. D.
Ghezzi
,
P.
Mora-Medina
,
I.
Hernández-Ávalos
,
J.
Jacome
,
A.
Castellón
,
I.
Falcón
,
F.
Reséndiz
,
N.
Romero
,
R.
Ponce
et al, “
Anatomical, physiological, and behavioral mechanisms of thermoregulation in elephants
,”
J. Anim. Behav. Biometeorol.
10
,
1
0
(
2022
).
12.
J. W.
Weisel
,
C.
Nagaswami
, and
R. O.
Peterson
, “
River otter hair structure facilitates interlocking to impede penetration of water and allow trapping of air
,”
Can. J. Zool.
83
,
649
655
(
2005
).
13.
W.
Landauer
, “
On the hair direction in mammals
,”
J. Mammal.
6
,
217
232
(
1925
).
14.
M.
Krsmanovic
,
H.
Ali
,
D.
Biswas
,
R.
Ghosh
, and
A. K.
Dickerson
, “
Fouling of mammalian hair fibres exposed to a titanium dioxide colloidal suspension
,”
J. R. Soc. Interface
19
,
20210904
(
2022
).
15.
M.
Krsmanovic
,
R.
Ghosh
, and
A. K.
Dickerson
, “
Fur flutter in fluid flow fends off foulers
,”
J. R Soc. Interface
20
,
20230485
(
2023
).
16.
A. P.
Lebanoff
and
A. K.
Dickerson
, “
Drop impact onto pine needle fibers with non-circular cross section
,”
Phys. Fluids
32
,
092113
(
2020
).
17.
G. P. S.
Rible
,
M. A.
Spinazzola,
III
,
R. E.
Jones,
III
,
R. U.
Constantin
,
W.
Wang
, and
A. K.
Dickerson
, “
Dynamic drop penetration of horizontally oriented fiber arrays
,”
Langmuir
40
,
13339
(
2024
).
18.
M.
Safavi
and
S.
Nourazar
, “
Experimental, analytical, and numerical study of droplet impact on a horizontal fiber
,”
Int. J. Multiphase Flow
113
,
316
324
(
2019
).
19.
S.-G.
Kim
and
W.
Kim
, “
Drop impact on a fiber
,”
Phys. Fluids
28
,
042001
(
2016
).
20.
Y.-Y.
Tang
,
M.-J.
Su
,
G.-W.
Chu
,
Y.
Luo
,
Y.-Y.
Wang
,
L.-L.
Zhang
, and
J.-F.
Chen
, “
Impact phenomena of liquid droplet passing through stainless steel wire mesh units
,”
Chem. Eng. Sci.
198
,
144
154
(
2019
).
21.
N.
Ojaghlou
,
H. V.
Tafreshi
,
D.
Bratko
, and
A.
Luzar
, “
Dynamical insights into the mechanism of a droplet detachment from a fiber
,”
Soft Matter
14
,
8924
8934
(
2018
).
22.
W.
Gu
,
S.
Yan
, and
Z.
Bai
, “
A study on a droplet impact on a fiber during coalescence-separation: Phenomena and models
,”
Chem. Eng. Sci.
212
,
115337
(
2020
).
23.
G.
Zhang
,
M. A.
Quetzeri-Santiago
,
C. A.
Stone
,
L.
Botto
, and
J. R.
Castrejón-Pita
, “
Droplet impact dynamics on textiles
,”
Soft Matter
14
,
8182
8190
(
2018
).
24.
D. J.
Bouchard
, “
Droplet impact, infiltration, and boiling in pores and porous media
,”
PhD thesis
(
University of Toronto
,
2021
).
25.
I. V.
Roisman
,
A.
Lembach
, and
C.
Tropea
, “
Drop splashing induced by target roughness and porosity: The size plays no role
,”
Adv. Colloid Interface Sci.
222
,
615
621
(
2015
).
26.
É.
Lorenceau
and
D.
Quéré
, “
Drops impacting a sieve
,”
J. Colloid Interface Sci.
263
,
244
249
(
2003
).
27.
K.
Cardin
,
C.
Josserand
, and
R. B.
Cal
, “
Droplet capture in a fiber array
,”
Phys. Rev. Fluids
8
,
043601
(
2023
).
28.
A.
Delbos
,
E.
Lorenceau
, and
O.
Pitois
, “
Forced impregnation of a capillary tube with drop impact
,”
J. Colloid Interface Sci.
341
,
171
177
(
2010
).
29.
A.
Kumar
and
S.
Hartland
, “
Shape of a drop on a vertical fiber
,”
J. Colloid Interface Sci.
124
,
67
76
(
1988
).
30.
M.
Radiom
,
W. K.
Chan
, and
C.
Yang
, “
A study of capillary flow from a pendant droplet
,”
Microfluid. Nanofluid.
7
,
697
707
(
2009
).
31.
A.
Nasto
,
P.-T.
Brun
, and
A. E.
Hosoi
, “
Drop impact on hairy surfaces
,”
Phys. Rev. Fluids
4
,
064004
(
2019
).
32.
C.
Tang
,
M.
Qin
,
X.
Weng
,
X.
Zhang
,
P.
Zhang
,
J.
Li
, and
Z.
Huang
, “
Dynamics of droplet impact on solid surface with different roughness
,”
Int. J. Multiphase Flow
96
,
56
69
(
2017
).
33.
A. N.
Lembach
,
H.-B.
Tan
,
I. V.
Roisman
,
T.
Gambaryan-Roisman
,
Y.
Zhang
,
C.
Tropea
, and
A. L.
Yarin
, “
Drop impact, spreading, splashing, and penetration into electrospun nanofiber mats
,”
Langmuir
26
,
9516
9523
(
2010
).
34.
D.
Bouchard
and
S.
Chandra
, “
Infiltration of impacting droplets into porous substrates
,”
Experiments Fluids
61
,
1
16
(
2020
).
35.
R. K.
Holman
,
M. J.
Cima
,
S. A.
Uhland
, and
E.
Sachs
, “
Spreading and infiltration of inkjet-printed polymer solution droplets on a porous substrate
,”
J. Colloid Interface Sci.
249
,
432
440
(
2002
).
36.
P.
Zhu
,
W.
Wang
,
X.
Chen
,
F.
Lin
,
X.
Wei
,
C.
Ji
, and
J.
Zou
, “
Experimental study of drop impact on a thin fiber
,”
Phys. Fluids
31
,
107102
(
2019
).
37.
R.
Labbé
and
C.
Duprat
, “
Capturing aerosol droplets with fibers
,”
Soft Matter
15
,
6946
6951
(
2019
).
38.
C.
Duprat
,
S.
Protiere
,
A.
Beebe
, and
H. A.
Stone
, “
Wetting of flexible fibre arrays
,”
Nature
482
,
510
513
(
2012
).
39.
M. W.
Kulbaba
, “
Investigating epizoochorous adaptations to mammalian furs
,”
PhD thesis
, (
Department of Biology, University of Winnipeg
,
2004
).
40.
R.
Mihaylov
and
K.
Kirilov
, “
Morphological study on hairs from mammalian predators in Bulgaria
,”
2022
.
41.
A.
Tokay
,
W. A.
Petersen
,
P.
Gatlin
, and
M.
Wingo
, “
Comparison of raindrop size distribution measurements by collocated disdrometers
,”
J. Atmos. Ocean. Technol.
30
,
1672
1690
(
2013
).
42.
W.
Wang
,
X.
Du
,
H.
Vahabi
,
S.
Zhao
,
Y.
Yin
,
A. K.
Kota
, and
T.
Tong
, “
Trade-off in membrane distillation with monolithic omniphobic membranes
,”
Nat. Commun.
10
,
3220
(
2019
).
43.
W.
Wang
,
J.
Salazar
,
H.
Vahabi
,
A.
Joshi-Imre
,
W. E.
Voit
, and
A. K.
Kota
, “
Metamorphic superomniphobic surfaces
,”
Adv. Mater.
29
,
1700295
(
2017
).
44.
M.
Cichomski
,
K.
Kośla
,
W.
Pawlak
,
W.
Kozłowski
, and
W.
Szmaja
, “
Stability and tribological investigations of 1h, 1h, 2h, 2h-perfluoroalkyltrichlorosilane on titania surface
,”
Tribol. Int.
77
,
1
6
(
2014
).
45.
M.
Cichomski
,
K.
Kośla
,
W.
Kozłowski
,
W.
Szmaja
,
J.
Balcerski
,
J.
Rogowski
, and
J.
Grobelny
, “
Investigation of the structure of fluoroalkylsilanes deposited on alumina surface
,”
Appl. Surf. Sci.
258
,
9849
9855
(
2012
).
46.
P. J.
Pritchard
and
J. W.
Mitchell
,
Fox and McDonald's Introduction to Fluid Mechanics
(
John Wiley & Sons
,
2016
).
47.
J.
Bico
,
B.
Roman
,
L.
Moulin
, and
A.
Boudaoud
, “
Elastocapillary coalescence in wet hair
,”
Nature
432
,
690
690
(
2004
).
48.
S.
Wildeman
,
C. W.
Visser
,
C.
Sun
, and
D.
Lohse
, “
On the spreading of impacting drops
,”
J. Fluid Mech.
805
,
636
655
(
2016
).
49.
S. A.
Oswald
,
S.
Bearhop
,
R. W.
Furness
,
B.
Huntley
, and
K. C.
Hamer
, “
Heat stress in a high-latitude seabird: Effects of temperature and food supply on bathing and nest attendance of great skuas Catharacta skua
,”
J. Avian Biol.
39
,
163
169
(
2008
).
50.
E. T.
Krause
and
T.
Ruploh
, “
Captive domesticated zebra finches (Taeniopygia guttata) have increased plasma corticosterone concentrations in the absence of bathing water
,”
Appl. Anim. Behav. Sci.
182
,
80
85
(
2016
).
51.
G.
Chaplin
,
N. G.
Jablonski
,
R. W.
Sussman
, and
E. A.
Kelley
, “
The role of piloerection in primate thermoregulation
,”
Folia Primatol.
85
,
1
17
(
2013
).
52.
J. D.
Pruetz
,
T. C.
LaDuke
, and
K.
Dobson
,
2022
Savanna chimpanzees (pan troglodytes verus) in senegal react to deadly snakes and other reptiles: Testing the snake detection hypothesis
,” bioRxiv, pp.
2022
09
.
53.
R.
Heesen
,
D. A.
Austry
,
Z.
Upton
, and
Z.
Clay
, “
Flexible signalling strategies by victims mediate post-conflict interactions in bonobos
,”
Philos. Trans. R. Soc.
B377
,
20210310
(
2022
).
54.
M. N.
Muller
and
R. W.
Wrangham
, “
Dominance, aggression and testosterone in wild chimpanzees: A test of the ‘challenge hypothesis
,’ ”
Anim. Behav.
67
,
113
123
(
2004
).
You do not currently have access to this content.