Compared to macroscopic bubbles, nanobubbles have unique physicochemical properties that make them highly promising for scientific research. Hydrogen nanobubbles (HNBs), in particular, combine hydrogen's properties with nanobubble-specific effects, offering significant applications in energy, water treatment, and medicine. This study systematically investigated the stability and dynamics of HNBs using molecular dynamics simulations. The results show that the sustained formation of HNBs requires hydrogen in water to reach supersaturation. Bubbles with diameters between 1.1 and 2.8 nm exhibit pressures ranging from 969.5 to 406.6 atm. Theoretical solubility, calculated using Henry's law based on pressure, remains valid at the nanoscale. An electrical double layer was observed at the gas–liquid interface, resulting from the reorientation of water molecules. The electrostatic force generated by the double layer counteracts the ultra-high Laplace pressure, aiding in the stability of nanobubbles. The dynamic properties, such as the diffusion coefficients of hydrogen and water, decrease as HNB size increases. The viscosity of solution containing nanobubbles of different sizes decreases by 6.64%, 8.14%, 14.16%, 19.29%, and 27.08%, respectively. These findings provide valuable insights for advancing the research and application of HNBs.

1.
S. H.
Oh
,
J. G.
Han
, and
J.-M.
Kim
, “
Long-term stability of hydrogen nanobubble fuel
,”
Fuel
158
,
399
404
(
2015
).
2.
H.
Hassanloo
and
X.
Wang
, “
Combustion mechanism of nanobubbled dodecane: A reactive molecular study
,”
Fuel
374
,
132486
(
2024
).
3.
L.
Zhao
,
M.
Teng
,
L.
Zhou
et al, “
Hydrogen nanobubble water: A good assistant for improving the water environment and agricultural production
,”
J. Agric. Food Chem.
71
(
33
),
12369
12371
(
2023
).
4.
C.
He
,
H.
Song
,
L.
Liu
et al, “
Enhancement of methane production by anaerobic digestion of corn straw with hydrogen-nanobubble water
,”
Bioresour. Technol.
344
,
126220
(
2022
).
5.
J.
He
,
Y.
Zhou
,
C.-M.
Geilfus
et al, “
Enhancing tomato fruit antioxidant potential through hydrogen nanobubble irrigation
,”
Hortic. Res.
11
(
6
),
uhae111
(
2024
).
6.
S.
Lv
,
L.
Zhang
,
T.
Wang
et al, “
Hydrogen nanobubbles and oxidative windows: Investigating how varying hydrogen concentrations influence seed germination and stress defense
,”
J. Hazard. Mater.
476
,
135035
(
2024
).
7.
D.
Ramanathan
,
L.
Huang
,
T.
Wilson
, and
W.
Boling
, “
Molecular hydrogen therapy for neurological diseases: A review of current evidence
,”
Med. Gas Res.
13
(
3
),
94
98
(
2023
).
8.
Y.
Zhang
,
W.
Fan
,
X.
Li
et al, “
Enhanced removal of free radicals by aqueous hydrogen nanobubbles and their role in oxidative stress
,”
Environ. Sci. Technol.
56
(
21
),
15096
15107
(
2022
).
9.
R.
Ning
,
S.
Yu
,
L.
Li
et al, “
Micro and nanobubbles-assisted advanced oxidation processes for water decontamination: The importance of interface reactions
,”
Water Res.
265
,
122295
(
2024
).
10.
H. H.
Hansen
,
H.
Cha
,
L.
Ouyang
et al, “
Nanobubble technologies: Applications in therapy from molecular to cellular level
,”
Biotechnol. Adv.
63
,
108091
(
2023
).
11.
J.
Zheng
,
J.
Qi
,
S.
Song
et al, “
An antioxidation strategy based on ultra-small nanobubbles without exogenous antioxidants
,”
Sci. Rep.
13
(
1
),
8455
(
2023
).
12.
T. T.
Le
,
P.
Sharma
,
B. J.
Bora
et al, “
Fueling the future: A comprehensive review of hydrogen energy systems and their challenges
,”
Int. J. Hydrogen Energy
54
,
791
816
(
2024
).
13.
N.
Ma
,
W.
Zhao
,
W.
Wang
et al, “
Large scale of green hydrogen storage: Opportunities and challenges
,”
Int. J. Hydrogen Energy
50
,
379
396
(
2024
).
14.
M. B.
Ledari
, H.
Khajehpour
, H.
Akbarnavasi
, and
S.
Edalati,
Greening steel industry by hydrogen: Lessons learned for the developing world
,”
Int. J. Hydrogen Energy
48
(
94
),
36623
36649
(
2023
).
15.
C.
Wu
,
P.
Zou
,
S.
Feng
et al, “
Molecular hydrogen: An emerging therapeutic medical gas for brain disorders
,”
Mol. Neurobiol.
60
(
4
),
1749
1765
(
2023
).
16.
K.
Kikuchi
,
S.
Nagata
,
Y.
Tanaka
et al, “
Characteristics of hydrogen nanobubbles in solutions obtained with water electrolysis
,”
J. Electroanal. Chem.
600
(
2
),
303
310
(
2007
).
17.
L.
Zhang
,
Y.
Zhang
,
X.
Zhang
et al, “
Electrochemically controlled formation and growth of hydrogen nanobubbles
,”
Langmuir
22
(
19
),
8109
8113
(
2006
).
18.
S.
Nakabayashi
,
R.
Shinozaki
,
Y.
Senda
, and
H.
Yoshikawa
, “
Hydrogen nanobubble at normal hydrogen electrode
,”
J. Phys. Condens. Matter
25
(
18
),
184008
(
2013
).
19.
Z.
Wang
,
Z.
Li
,
A.
Velázquez-Palenzuela
et al, “
Nucleation behavior and kinetics of single hydrogen nanobubble in ionic liquid system
,”
Int. J. Hydrogen Energy
48
(
43
),
16198
16205
(
2023
).
20.
M.
Mita
,
H.
Matsushima
,
M.
Ueda
, and
H.
Ito
, “
In-situ high-speed atomic force microscopy observation of dynamic nanobubbles during water electrolysis
,”
J. Colloid Interface Sci.
614
,
389
395
(
2022
).
21.
V. B.
Svetovoy
, “
Spontaneous chemical reactions between hydrogen and oxygen in nanobubbles
,”
Curr. Opin. Colloid Interface Sci.
52
,
101423
(
2021
).
22.
S.
Kholimatussadiah
,
C.-L.
Hsu
,
S.-W.
Ke
et al, “
In-situ observation of hydrogen nanobubbles formation on graphene surface by AFM-SECM
,”
Electrochim. Acta
493
,
144425
(
2024
).
23.
X.
Wang
,
P.
Li
,
R.
Ning
et al, “
Mechanisms on stability of bulk nanobubble and relevant applications: A review
,”
J. Cleaner Prod.
426
,
139153
(
2023
).
24.
H.
Teshima
,
H.
Kusudo
,
C.
Bistafa
, and
Y.
Yamaguchi
, “
Quantifying interfacial tensions of surface nanobubbles: How far can Young's equation explain?
,”
Nanoscale
14
(
6
),
2446
2455
(
2022
).
25.
F. Y.
Ushikubo
,
T.
Furukawa
,
R.
Nakagawa
et al, “
Evidence of the existence and the stability of nano-bubbles in water
,”
Colloids Surf., A
361
(
1–3
),
31
37
(
2010
).
26.
L.
Zhang
,
H.
Chen
,
Z.
Li
et al, “
Long lifetime of nanobubbles due to high inner density
,”
Sci. China Ser. G
51
(
2
),
219
224
(
2008
).
27.
N. F.
Bunkin
,
S. O.
Yurchenko
,
N. V.
Suyazov
, and
A. V.
Shkirin
, “
Structure of the nanobubble clusters of dissolved air in liquid media
,”
J. Biol. Phys.
38
,
121
152
(
2012
).
28.
K.
Yasui
,
T.
Tuziuti
,
W.
Kanematsu
, and
K.
Kato
, “
Dynamic equilibrium model for a bulk nanobubble and a microbubble partly covered with hydrophobic material
,”
Langmuir
32
(
43
),
11101
11110
(
2016
).
29.
H.
Zhang
,
S.
Chen
,
Z.
Guo
, and
X.
Zhang
, “
The fate of bulk nanobubbles under gas dissolution
,”
Phys. Chem. Chem. Phys.
24
(
16
),
9685
9694
(
2022
).
30.
H.
Hu
,
F.
Shi
,
P.
Tieu
et al, “
Quasi/non-equilibrium state in nanobubble growth trajectory revealed by in-situ transmission electron microscopy
,”
Nano Today
48
,
101761
(
2023
).
31.
M.
Suvira
,
A.
Ahuja
,
P.
Lovre
et al, “
Imaging single H2 nanobubbles using off-axis dark-field microscopy
,”
Anal. Chem.
95
(
43
),
15893
15899
(
2023
).
32.
Y.
Lu
,
L.
Yang
,
Y.
Kuang
et al, “
Molecular simulations on the stability and dynamics of bulk nanobubbles in aqueous environments
,”
Phys. Chem. Chem. Phys.
23
(
48
),
27533
27542
(
2021
).
33.
S. A.
Hewage
and
J. N.
Meegoda
, “
Molecular dynamics simulation of bulk nanobubbles
,”
Colloids Surf., A
650
,
129565
(
2022
).
34.
J.
Lei
,
D.
Huang
,
W.
Zhao
et al, “
Investigating the stability mechanisms of single bulk nanobubbles: A molecular dynamics perspective
,”
Int. J. Heat Mass Transfer
225
,
125407
(
2024
).
35.
P.
Zhang
,
C.
Chen
,
M.
Feng
et al, “
Hydroxide and hydronium ions modulate the dynamic evolution of nitrogen nanobubbles in water
,”
J. Am. Chem. Soc.
146
(
28
),
19537
19546
(
2024
).
36.
Y.
Zhang
,
X.
Zhu
,
J. A.
Wood
, and
D.
Lohse
, “
Threshold current density for diffusion-controlled stability of electrolytic surface nanobubbles
,”
Proc. Nat. Acad. Sci.
121
(
21
),
e2321958121
(
2024
).
37.
V. H.
Man
,
M. S.
Li
,
P.
Derreumaux
, and
P. H.
Nguyen
, “
Stability and cavitation of nanobubble: Insights from large-scale atomistic molecular dynamics simulations
,”
J. Chem. Phys.
161
(
13
),
134503
(
2024
).
38.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
et al, “
Lammps-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
,”
Comput. Phys. Commun.
271
,
108171
(
2022
).
39.
Q. Y.
Yang
and
C. L.
Zhong
, “
Molecular simulation of adsorption and diffusion of hydrogen in metal-organic frameworks
,”
J. Phys. Chem. B
109
(
24
),
11862
11864
(
2005
).
40.
J. L.
Abascal
and
C.
Vega
, “
A general purpose model for the condensed phases of water: Tip4p/2005
,”
J. Chem. Phys.
123
(
23
),
234505
(
2005
).
41.
A.
Markesteijn
,
R.
Hartkamp
,
S.
Luding
, and
J.
Westerweel
, “
A comparison of the value of viscosity for several water models using Poiseuille flow in a nano-channel
,”
J. Chem. Phys.
136
(
13
),
134104
(
2012
).
42.
J. E.
Lennard-Jones
, “
Cohesion
,”
Proc. Phys. Soc.
43
(
5
),
461
(
1931
).
43.
J. O.
Hirschfelder
,
C. F.
Curtiss
, and
R. B.
Bird
, “
Molecular theory of gases and liquids
,”
Phys. Today
8
(
3
),
17
17
(
1955
).
44.
C.
Jiang
,
W.
Li
, and
Q.
Liu
, “
Influence of wall–fluid interaction on the relationship between mass transfer and nanopore width
,”
Phys. Fluids
36
(
8
),
082003
(
2024
).
45.
L.
Martinez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M.
Martinez
, “
Packmol: A package for building initial configurations for molecular dynamics simulations
,”
J. Comput. Chem.
30
(
13
),
2157
2164
(
2009
).
46.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graph. Modell.
14
(
1
),
33
38
(
1996
).
47.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool
,”
Modell. Simul. Mater. Sci. Eng.
18
(
1
),
015012
(
2010
).
48.
M.
Ester
,
H.-P.
Kriegel
,
J.
Sander
, and
X.
Xu
, “
A density-based algorithm for discovering clusters in large spatial databases with noise
,” in
Proceedings of the KDD
(
1996
).
49.
D. C.
Rapaport
,
The Art of Molecular Dynamics Simulation
(
Cambridge University Press
,
2004
).
50.
J. H.
Wang
, “
Self-diffusion coefficients of water
,”
J. Phys. Chem.
69
(
12
),
4412
4412
(
1965
).
51.
K.
Gertz
and
H.
Loeschcke
, “
Bestimmung der Diffusions-Koeffizienten von H2, O2, N2, und He in Wasser und Blutserum bei konstant gehaltener Konvektion
,”
Z. Naturforsch. B
9
(
1
),
1
9
(
1954
).
52.
D. L.
Wise
and
G.
Houghton
, “
The diffusion coefficients of ten slightly soluble gases in water at 10–60 C
,”
Chem. Eng. Sci.
21
(
11
),
999
1010
(
1966
).
53.
W.
De Blok
and
J.
Fortuin
, “
Method for determining diffusion coefficients of slightly soluble gases in liquids
,”
Chem. Eng. Sci.
36
(
10
),
1687
1694
(
1981
).
54.
IN.
Tsimpanogiannis
,
S.
Maity
,
A. T.
Celebi
, and
O. A.
Moultos
, “
Engineering model for predicting the intradiffusion coefficients of hydrogen and oxygen in vapor, liquid, and supercritical water based on molecular dynamics simulations
,”
J. Chem. Eng. Data
66
(
8
),
3226
3244
(
2021
).
55.
B.
Hess
, “
Determining the shear viscosity of model liquids from molecular dynamics simulations
,”
J. Chem. Phys.
116
(
1
),
209
217
(
2002
).
56.
I.
Topal
and
J.
Servantie
, “
Molecular dynamics study of the thermal conductivity in nanofluids
,”
Chem. Phys.
516
,
147
151
(
2019
).
57.
R.
Wang
,
S.
Qian
, and
Z.
Zhang
, “
Investigation of the aggregation morphology of nanoparticle on the thermal conductivity of nanofluid by molecular dynamics simulations
,”
Int. J. Heat Mass Transfer
127
,
1138
1146
(
2018
).
58.
J.-H.
Ri
,
S.-N.
Hong
,
C.-H.
Ri
, and
C.-J.
Yu
, “
Effect of porosity and temperature on viscosity and diffusivity of benzene liquid containing nanobubble with molecular dynamics
,”
Fluid Phase Equilib.
585
,
114167
(
2024
).
59.
E. W.
Lemmon
,
Thermophysical Properties of Fluid Systems.
NIST Chemistry WebBook
(
2010
).
60.
W.
Henry,
III. Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures
,”
Philos. Trans. R. Soc. London
93
,
29
274
(
1803
).
61.
F.
Behroozi
, “
A fresh look at the young-Laplace equation and its many applications in hydrostatics
,”
Phys. Teach.
60
(
5
),
358
361
(
2022
).
62.
N.
Nirmalkar
,
A.
Pacek
, and
M.
Barigou
, “
On the existence and stability of bulk nanobubbles
,”
Langmuir
34
(
37
),
10964
10973
(
2018
).
63.
Y.
Du
,
F.
Pei
,
R.
Mao
et al, “
Dynamic viscosity of water containing large-sized nanobubbles simulated with coarse-grained molecular dynamics model
,”
Colloids Surf., A
705
,
135535
(
2024
).
You do not currently have access to this content.