This study presents a practical approach for the characterization and control of hydrodynamic cavitation (HC) behavior in microfluidic devices by utilizing real-time static pressure measurements. Two geometrically identical micro-orifice devices were specifically designed for this purpose. Pressure measurement locations were strategically positioned along the embedded microchannel in both devices. These locations were determined as a function of the hydraulic diameter of the microchannel. Pressure measurements were simultaneously made with high-speed imaging. Particular attention was directed to the prediction and monitoring of cavitation inception, cavitating flow patterns, and cavitation development. Thus, the dynamic and complex nature of hydrodynamic cavitation in microdomains could be captured by local pressure variations along the microchannel walls. According to the results, cavitation inception and subsequent formation of twin sheet cavities could be detected by changes in local pressure values. Moreover, the analysis of local pressure variations could be employed to predict the length of sheet cavities. The findings of this study offer valuable guidelines for designing microfluidic systems involving hydrodynamic cavitation. Moreover, this study proves the potential of local wall pressure measurements as a stand-alone practical approach, which will reduce reliance on high-speed visualization. It could thus enhance the affordability and accessibility of HC-on-a-chip platforms for emerging applications, including biomedical engineering, wastewater treatment, and 2D material exfoliation.

1.
C. E.
Brennen
,
Cavitation and Bubble Dynamics
(
Cambridge University Press
,
2013
), pp.
1
249
.
2.
F. R.
Young
,
Cavitation
(
Imperial College Press and Distributed by World Scientific Publishing Co.
,
1999
).
3.
C. D.
Ohl
,
V.
Venugopalan
, and
P. A.
Quinto-Su
, “
Generation of laser-induced cavitation bubbles with a digital hologram
,”
Opt. Express.
16
(
23
),
18964
18969
(
2008
).
4.
M.
Ashokkumar
, “
The characterization of acoustic cavitation bubbles – An overview
,”
Ultrason. Sonochem.
18
(
4
),
864
872
(
2011
).
5.
P. R.
Gogate
and
A. B.
Pandit
, “
A review and assessment of hydrodynamic cavitation as a technology for the future
,”
Ultrason. Sonochem.
12
(
1–2
),
21
27
(
2005
).
6.
F.
Rokhsar Talabazar
,
A.
Sheibani Aghdam
,
M.
Jafarpour
,
D.
Grishenkov
,
A.
Koşar
, and
M.
Ghorbani
, “
Chemical effects in ‘hydrodynamic cavitation on a chip’: The role of cavitating flow patterns
,”
Chem. Eng. J.
445
,
136734
(
2022
).
7.
Z.
Wang
,
H.
Cheng
, and
B.
Ji
, “
Euler-Lagrange study of cavitating turbulent flow around a hydrofoil
,”
Phys. Fluids
33
(
11
),
112108
(
2021
).
8.
Z.
Wang
,
H.
Cheng
,
B.
Ji
, and
X.
Peng
, “
Numerical investigation of inner structure and its formation mechanism of cloud cavitating flow
,”
Int. J. Multiphase Flow
165
,
104484
(
2023
).
9.
X.
Zhao
,
H.
Cheng
,
B.
Ji
,
L.
Li
, and
R. E.
Bensow
, “
Insights into the characteristics of sheet/cloud cavitation and tip-leakage cavitation based on a compressible Euler-Lagrange model
,”
Phys. Rev. Fluids
9
(
10
),
104304
(
2024
).
10.
Z. F.
Zhu
and
S. L.
Fang
, “
Numerical investigation of cavitation performance of ship propellers
,”
J. Hydrodyn.
24
(
3
),
347
353
(
2012
).
11.
X. W.
Luo
,
B.
Ji
, and
Y.
Tsujimoto
, “
A review of cavitation in hydraulic machinery
,”
J. Hydrodyn.
28
(
3
),
335
358
(
2016
).
12.
M.
Dular
,
T.
Griessler-Bulc
,
I.
Gutierrez-Aguirre
,
E.
Heath
,
T.
Kosjek
,
A.
Krivograd Klemenčič
,
M.
Oder
,
M.
Petkovšek
,
N.
Rački
,
M.
Ravnikar
,
A.
Šarc
,
B.
Širok
,
M.
Zupanc
,
M.
Žitnik
, and
B.
Kompare
, “
Use of hydrodynamic cavitation in (waste)water treatment
,”
Ultrason. Sonochem.
29
,
577
588
(
2016
).
13.
N.
Asaithambi
,
P.
Singha
,
M.
Dwivedi
, and
S. K.
Singh
, “
Hydrodynamic cavitation and its application in food and beverage industry: A review
,”
J. Food Process Eng.
42
(
5
),
e134
(
2019
).
14.
S. S.
Save
,
A. B.
Pandit
, and
J. B.
Joshi
, “
Use of hydrodynamic cavitation for large scale microbial cell disruption
,”
Food Bioprod. Process.
75
(
1
),
41
49
(
1997
).
15.
H.
Zheng
,
Y.
Zheng
, and
J.
Zhu
, “
Recent developments in hydrodynamic cavitation reactors: Cavitation mechanism, reactor design, and applications
,”
Engineering
19
,
180
198
(
2022
).
16.
F.
Augier
,
F.
Ayela
,
W.
Cherief
,
D.
Colombet
,
G.
Ledoux
,
M.
Martini
,
S.
Mossaz
,
D.
Podbevsek
,
X.
Qiu
, and
O.
Tillement
, “
Hydrodynamic cavitation through ‘labs on a chip’: From fundamentals to applications
,”
Oil Gas Sci. Technol. – Rev. IFP Energies Nouvelles
72
(
4
),
19
(
2017
).
17.
S.
Seyedmirzaei Sarraf
,
F.
Rokhsar Talabazar
,
I.
Namli
,
M.
Maleki
,
A.
Sheibani Aghdam
,
G.
Gharib
,
D.
Grishenkov
,
M.
Ghorbani
, and
A.
Koşar
, “
Fundamentals, biomedical applications and future potential of micro-scale cavitation-a review
,”
Lab Chip
22
(
12
),
2237
2258
(
2022
).
18.
M. T.
Gevari
,
M.
Ghorbani
,
A. J.
Svagan
,
D.
Grishenkov
, and
A.
Kosar
, “
Energy harvesting with micro scale hydrodynamic cavitation-thermoelectric generation coupling
,”
AIP Adv.
9
(
10
),
105012
(
2019
).
19.
B.
Schneider
,
A.
Koşar
,
C. J.
Kuo
,
C.
Mishra
,
G. S.
Cole
,
R. P.
Scaringe
, and
Y.
Peles
, “
Cavitation enhanced heat transfer in microchannels
,”
J Heat Transfer
128
(
12
),
1293
1301
(
2006
).
20.
M.
Jafarpour
,
A. S.
Aghdam
,
M. T.
Gevari
,
A.
Koşar
,
M. K.
Bayazit
, and
M.
Ghorbani
, “
An ecologically friendly process for graphene exfoliation based on the ‘hydrodynamic cavitation on a chip’ concept
,”
RSC Adv.
11
(
29
),
17965
(
2021
).
21.
C.
Mishra
and
Y.
Peles
, “
An experimental investigation of hydrodynamic cavitation in micro-Venturis
,”
Phys. Fluids
18
(
10
),
103603
(
2006
).
22.
C.
Mishra
and
Y.
Peles
, “
Size scale effects on cavitating flows through microorifices entrenched in rectangular microchannels
,”
J. Microelectromech. Syst.
14
(
5
),
987
999
(
2005
).
23.
C.
Mishra
and
Y.
Peles
, “
Cavitation in flow through a micro-orifice inside a silicon microchannel
,”
Phys. Fluids
17
(
1
),
013601
(
2005
).
24.
K. S.
Im
,
S. K.
Cheong
,
C. F.
Powell
,
M. C. D.
Lai
, and
J.
Wang
, “
Unraveling the geometry dependence of in-nozzle cavitation in high-pressure injectors
,”
Sci. Rep.
3
(
1
),
1
5
(
2013
).
25.
Z. J.
Jin
,
Z. X.
Gao
,
X. J.
Li
, and
J. Y.
Qian
, “
Cavitating flow through a micro-orifice
,”
Micromachines
10
(
3
),
191
(
2019
).
26.
M.
Dular
,
I.
Khlifa
,
S.
Fuzier
,
M.
Adama Maiga
, and
O.
Coutier-Delgosha
, “
Scale effect on unsteady cloud cavitation
,”
Exp. Fluids
53
(
5
),
1233
1250
(
2012
).
27.
M.
Ghorbani
, “
The hydrodynamic cavitation manifestation in small chips
,”
IEEE Access
9
,
110517
110524
(
2021
).
28.
M.
Ghorbani
,
A. K.
Sadaghiani
,
L. G.
Villanueva
, and
A.
Koşar
, “
Hydrodynamic cavitation in microfluidic devices with roughened surfaces
,”
J. Micromech. Microeng.
28
(
7
),
075016
(
2018
).
29.
A. S.
Aghdam
,
M.
Ghorbani
,
G.
Deprem
,
F. Ç.
Cebeci
, and
A.
Koşar
, “
A new method for intense cavitation bubble generation on layer-by-layer assembled SLIPS
,”
Sci. Rep.
9
(
1
),
1
13
(
2019
).
30.
A.
Hosseinpour Shafaghi
,
F.
Rokhsar Talabazar
,
M.
Zuvin
,
M.
Talebian Gevari
,
L. G.
Villanueva
,
M.
Ghorbani
, and
A.
Koşar
, “
On cavitation inception and cavitating flow patterns in a multi-orifice microfluidic device with a functional surface
,”
Phys. Fluids
33
(
3
),
032005
(
2021
).
31.
G.
Zhang
,
I.
Khlifa
,
K.
Fezzaa
,
M.
Ge
, and
O.
Coutier-Delgosha
, “
Experimental investigation of internal two-phase flow structures and dynamics of quasi-stable sheet cavitation by fast synchrotron x-ray imaging
,”
Phys. Fluids
32
(
11
),
113310
(
2020
).
32.
S.
Barre
,
J.
Rolland
,
G.
Boitel
,
E.
Goncalves
, and
R. F.
Patella
, “
Experiments and modeling of cavitating flows in venturi: Attached sheet cavitation
,”
Eur. J. Mech. B Fluids
28
(
3
),
444
464
(
2009
).
33.
E. J.
Foeth
,
C. W. H.
Van Doorne
,
T.
Van Terwisga
, and
B.
Wieneke
, “
Time resolved PIV and flow visualization of 3D sheet cavitation
,”
Exp. Fluids
40
(
4
),
503
513
(
2006
).
34.
A. Y.
Kravtsova
,
D. M.
Markovich
,
K. S.
Pervunin
,
M. V.
Timoshevskiy
, and
K.
Hanjalić
, “
High-speed visualization and PIV measurements of cavitating flows around a semi-circular leading-edge flat plate and NACA0015 hydrofoil
,”
Int. J. Multiphase Flow
60
,
119
134
(
2014
).
35.
F.
Rokhsar Talabazar
,
M.
Jafarpour
,
M.
Zuvin
,
H.
Chen
,
M. T.
Gevari
,
L. G.
Villanueva
,
D.
Grishenkov
,
A.
Koşar
, and
M.
Ghorbani
, “
Design and fabrication of a vigorous ‘cavitation-on-a-chip’ device with a multiple microchannel configuration
,”
Microsyst. Nanoeng.
7
(
1
),
1
13
(
2021
).
36.
A.
Šarc
,
T.
Stepišnik-Perdih
,
M.
Petkovšek
, and
M.
Dular
, “
The issue of cavitation number value in studies of water treatment by hydrodynamic cavitation
,”
Ultrason. Sonochem.
34
,
51
59
(
2017
).
37.
S. S.
Sawant
,
A. C.
Anil
,
V.
Krishnamurthy
,
C.
Gaonkar
,
J.
Kolwalkar
,
L.
Khandeparker
,
D.
Desai
,
A. V.
Mahulkar
,
V. V.
Ranade
, and
A. B.
Pandit
, “
Effect of hydrodynamic cavitation on zooplankton: A tool for disinfection
,”
Biochem. Eng. J.
42
(
3
),
320
328
(
2008
).
38.
P.
Pipp
,
M.
Hočevar
, and
M.
Dular
, “
Challenges of numerical simulations of cavitation reactors for water treatment – An example of flow simulation inside a cavitating microchannel
,”
Ultrason. Sonochem.
77
,
105663
(
2021
).
39.
E.
Hutli
,
M. S.
Nedeljkovic
,
N. A.
Radovic
, and
A.
Bonyár
, “
The relation between the high speed submerged cavitating jet behaviour and the cavitation erosion process
,”
Int. J. Multiphase Flow
83
,
27
38
(
2016
).
40.
M.
Omelyanyuk
,
A.
Ukolov
,
I.
Pakhlyan
,
N.
Bukharin
, and
M.
El Hassan
, “
Experimental and numerical study of cavitation number limitations for hydrodynamic cavitation inception prediction
,”
Fluids
7
(
6
),
198
(
2022
).
41.
M.
Ge
,
G.
Zhang
,
M.
Petkovšek
,
K.
Long
, and
O.
Coutier-Delgosha
, “
Intensity and regimes changing of hydrodynamic cavitation considering temperature effects
,”
J. Clean Prod.
338
,
130470
(
2022
).
42.
D.
Bauer
,
H.
Chaves
, and
C.
Arcoumanis
, “
Measurements of void fraction distribution in cavitating pipe flow using x-ray CT
,”
Meas. Sci. Technol.
23
(
5
),
055302
(
2012
).
43.
A.
Cioncolini
,
F.
Scenini
, and
J.
Duff
, “
Micro-orifice single-phase liquid flow: Pressure drop measurements and prediction
,”
Exp. Therm. Fluid Sci.
65
,
33
40
(
2015
).
44.
A.
Simpson
and
V. V.
Ranade
, “
Modelling of hydrodynamic cavitation with orifice: Influence of different orifice designs
,”
Chem. Eng. Res. Des.
136
,
698
711
(
2018
).
45.
M.
Khavari
,
A.
Priyadarshi
,
J.
Morton
,
K.
Porfyrakis
,
K.
Pericleous
,
D.
Eskin
, and
I.
Tzanakis
, “
Cavitation-induced shock wave behaviour in different liquids
,”
Ultrason. Sonochem.
94
,
106328
(
2023
).
46.
J.
Morton
,
M.
Khavari
,
A.
Priyadarshi
,
A.
Kaur
,
N.
Grobert
,
J.
Mi
,
K.
Porfyrakis
,
P.
Prentice
,
D. G.
Eskin
, and
I.
Tzanakis
, “
Dual frequency ultrasonic cavitation in various liquids: High-speed imaging and acoustic pressure measurements
,”
Phys. Fluids
35
(
1
),
017135
(
2023
).
47.
M.
Khavari
,
A.
Priyadarshi
,
A.
Hurrell
,
K.
Pericleous
,
D.
Eskin
, and
I.
Tzanakis
, “
Characterization of shock waves in power ultrasound
,”
J. Fluid Mech.
915
,
R3
(
2021
).
48.
B.
Puneeth
,
M. B.
Kulkarni
,
S.
Goel
,
P.
Gravesen
,
J.
Branebjerg
, and
O. S.
Jensen
, “
Microfluidics-a review
,”
J. Micromech. Microeng.
3
(
4
),
168
(
1993
).
You do not currently have access to this content.