In this Letter, the numerical simulation of three-dimensional hydrodynamic relativistic jet propagation from an active galactic nuclei has been performed by solving relativistic hydrodynamic equations in the computer code PLUTO [A. Mignone et al., “PLUTO: A numerical code for computational astrophysics,” Astrophys. J. Suppl. Ser. 170, 228 (2007)] using higher-order finite volume method. Furthermore, the invariants (P, Q, and R) of velocity gradient tensor (uixj) have been analyzed using numerical simulation data in order to identify the local flow topology [M. S. Chong et al., “A general classification of three-dimensional flow fields,” Phys. Fluids A: Fluid Dyn. 2, 765–777 (1990); S. Suman and S. S. Girimaji, “Velocity gradient invariants and local flow-field topology in compressible turbulence,” J. Turbul. 11, N2 (2010); P. Thaker et al., “Invariants of the velocity gradient tensor in a spatially developing compressible round jet,” J. Fluid Mech. 971, A18 (2023)] and thereby shock–turbulence interaction. The joint probability density function (p.d.f) of QR obtained from numerical data depicts the presence of turbulent sheet-like structures during the propagation of this relativistic jet.

1.
A.
Mignone
,
G.
Bodo
,
S.
Massaglia
,
T.
Matsakos
,
O. E.
Tesileanu
,
C.
Zanni
, and
A.
Ferrari
, “
PLUTO: A numerical code for computational astrophysics
,”
Astrophys. J. Suppl. Ser.
170
,
228
(
2007
).
2.
M. S.
Chong
,
A. E.
Perry
, and
B. J.
Cantwell
, “
A general classification of three-dimensional flow fields
,”
Phys. Fluids A: Fluid Dyn.
2
,
765
777
(
1990
).
3.
S.
Suman
and
S. S.
Girimaji
, “
Velocity gradient invariants and local flow-field topology in compressible turbulence
,”
J. Turbul.
11
,
N2
(
2010
).
4.
P.
Thaker
,
J.
Mathew
, and
S.
Ghosh
, “
Invariants of the velocity gradient tensor in a spatially developing compressible round jet
,”
J. Fluid Mech.
971
,
A18
(
2023
).
5.
T.
Piran
, “
The physics of gamma-ray bursts
,”
Rev. Mod. Phys.
76
,
1143
1210
(
2005
).
6.
B. M.
Gaensler
and
P. O.
Slane
, “
The evolution and structure of pulsar wind nebulae
,”
Annu. Rev. Astron. Astrophys.
44
,
17
47
(
2006
).
7.
M.
Hardcastle
and
J.
Croston
, “
Radio galaxies and feedback from AGN jets
,”
New Astron. Rev.
88
,
101539
(
2020
).
8.
L.
Nava
,
R.
Desiante
,
F.
Longo
,
A.
Celotti
,
N.
Omodei
,
G.
Vianello
,
E.
Bissaldi
, and
T.
Piran
, “
Constraints on the bulk Lorentz factor of Gamma-Ray Burst jets from Fermi/LAT upper limits
,”
Mon. Not. R. Astron. Soc.
465
,
811
(
2017
).
9.
T.
Savolainen
,
D.
Homan
,
T.
Hovatta
,
M.
Kadler
,
Y.
Kovalev
,
M.
Lister
,
E.
Ros
, and
J.
Zensus
, “
Relativistic beaming and gamma-ray brightness of blazars
,”
Astron. Astrophys.
512
,
A24
(
2010
).
10.
M. L.
Lister
,
M.
Aller
,
H.
Aller
,
D. C.
Homan
,
K.
Kellermann
,
Y. Y.
Kovalev
,
A.
Pushkarev
,
J.
Richards
,
E.
Ros
, and
T.
Savolainen
, “
Mojave. x. parsec-scale jet orientation variations and superluminal motion in active galactic nuclei
,”
Astron. J.
146
,
120
(
2013
).
11.
E. M. d G.
Dal Pino
, “
Astrophysical jets and outflows
,”
Adv. Space Res.
35
,
908
924
(
2005
).
12.
M.
Norman
,
K.-H.
Winkler
,
L.
Smarr
, and
M.
Smith
, “
Structure and dynamics of supersonic jets
,”
Astron. Astrophys.
113
(
2
),
285
302
(
1982
).
13.
A. H.
Bridle
,
Physics of energy transport in extragalactic radio sources
(
Physics of Energy Transport in Extragalactic Radio Sources
,
1984
).
14.
J. M.
Martí
,
E.
Müller
, and
J. M.
Ibáñez
, “
Hydrodynamical simulations of relativistic jets
,”
Astron. Astrophys.
281
,
L9
L12
(
1994
).
15.
J. M.
Martí
,
E.
Müller
,
J.
Font
,
J. M. Z.
Ibáñez
, and
A.
Marquina
, “
Morphology and dynamics of relativistic jets
,”
Astrophys. J.
479
,
151
(
1997
).
16.
S.
Komissarov
, “
Numerical simulations of relativistic magnetized jets
,”
Mon. Not. R. Astron. Soc.
308
,
1069
1076
(
1999
).
17.
J.
Seo
,
H.
Kang
,
D.
Ryu
,
S.
Ha
, and
I.
Chattopadhyay
, “
A simulation study of ultra-relativistic jets–i. a new code for relativistic hydrodynamics
,”
Astrophys. J.
920
,
143
(
2021
).
18.
M.
Perucho
and
J.
López-Miralles
, “
Numerical simulations of relativistic jets
,”
J. Plasma Phys.
89
,
915890501
(
2023
).
19.
P.
Abolmasov
and
O.
Bromberg
, “
Interface instabilities in hydrodynamic relativistic jets
,”
Mon. Not. R. Astron. Soc.
520
,
3009
3026
(
2023
).
20.
P. A.
Hughes
,
M. A.
Miller
, and
G. C.
Duncan
, “
Three-dimensional hydrodynamic simulations of relativistic extragalactic jets
,”
Astrophys. J.
572
,
713
(
2002
).
21.
E.
Choi
,
P. J.
Wiita
, and
D.
Ryu
, “
Hydrodynamic interactions of relativistic extragalactic jets with dense clouds
,”
Astrophys. J.
655
,
769
(
2007
).
22.
D.
Ryu
,
Hydrodynamic Interactions of Relativistic Extragalactic Jets with Dense Clouds
(
American Astronomical Society
,
2006
).
23.
G.
Mattia
,
L.
Del Zanna
,
M.
Bugli
,
A.
Pavan
,
R.
Ciolfi
,
G.
Bodo
, and
A.
Mignone
, “
Resistive relativistic MHD simulations of astrophysical jets
,”
Astron. Astrophys.
679
,
A49
(
2023
).
24.
L.
Del Zanna
,
E.
Papini
,
S.
Landi
,
M.
Bugli
, and
N.
Bucciantini
, “
Fast reconnection in relativistic plasmas: The magnetohydrodynamics tearing instability revisited
,”
Mon. Not. R. Astron. Soc.
460
,
3753
3765
(
2016
).
25.
A.
Chernoglazov
,
B.
Ripperda
, and
A.
Philippov
, “
Dynamic alignment and plasmoid formation in relativistic magnetohydrodynamic turbulence
,”
Astrophys. J. Lett.
923
,
L13
(
2021
).
26.
Q.
Qian
,
C.
Fendt
,
S.
Noble
, and
M.
Bugli
, “
rHARM: Accretion and ejection in resistive gr-mhd
,”
Astrophys. J.
834
,
29
(
2017
).
27.
C.
Vourellis
,
C.
Fendt
,
Q.
Qian
, and
S. C.
Noble
, “
GR-MHD disk winds and jets from black holes and resistive accretion disks
,”
Astrophys. J.
882
,
2
(
2019
).
28.
B.
Ripperda
,
F.
Bacchini
, and
A. A.
Philippov
, “
Magnetic reconnection and hot spot formation in black hole accretion disks
,”
Astrophys. J.
900
,
100
(
2020
).
29.
B.
Ripperda
,
M.
Liska
,
K.
Chatterjee
,
G.
Musoke
,
A. A.
Philippov
,
S. B.
Markoff
,
A.
Tchekhovskoy
, and
Z.
Younsi
, “
Black hole flares: Ejection of accreted magnetic flux through 3d plasmoid-mediated reconnection
,”
Astrophys. J. Lett.
924
,
L32
(
2022
).
30.
J. A.
Kramer
and
N. R.
MacDonald
, “
Ray-tracing in relativistic jet simulations: A polarimetric study of magnetic field morphology and electron scaling relations
,”
Astron. Astrophys.
656
,
A143
(
2021
).
31.
R. K.
Joshi
and
I.
Chattopadhyay
, “
The morphology and dynamics of relativistic jets with relativistic equation of state
,”
Astrophys. J.
948
,
13
(
2023
).
32.
R. K.
Joshi
,
S.
Debnath
, and
I.
Chattopadhyay
, “
Shocks in radiatively driven time-dependent, relativistic jets around black holes
,”
Astrophys. J.
933
,
75
(
2022
).
33.
R. K.
Joshi
,
I.
Chattopadhyay
,
A.
Tsokaros
, and
P. K.
Tripathi
, “
Numerical simulation of radiatively driven transonic relativistic jets
,”
Astrophys. J.
971
,
13
(
2024
).
34.
D.
Mukherjee
,
G.
Bodo
,
P.
Rossi
,
A.
Mignone
, and
B.
Vaidya
, “
Simulating the dynamics and synchrotron emission from relativistic jets–ii. evolution of non-thermal electrons
,”
Mon. Not. R. Astron. Soc.
505
,
2267
2284
(
2021
).
35.
S.
Mandal
,
P. C.
Duffell
, and
Y.
Li
, “
Numerical investigation of dynamical and morphological trends in relativistic jets
,”
Astrophys. J.
935
,
42
(
2022
).
36.
R.
Pal
and
A.
Roy
, “
Numerical studies of hydrodynamic relativistic astrophysical jet: The modification of vorticity transport equation
,”
Phys. Fluids
36
,
101709
(
2024
).
37.
A.
Mignone
,
T.
Plewa
, and
G.
Bodo
, “
The piecewise parabolic method for multidimensional relativistic fluid dynamics
,”
Astrophys. J. Suppl. Ser.
160
,
199
(
2005
).
38.
S.
Falle
and
S.
Komissarov
, “
An upwind numerical scheme for relativistic hydrodynamics with a general equation of state
,”
Mon. Not. R. Astron. Soc.
278
,
586
602
(
1996
).
39.
J. M.
Martı
and
E.
Müller
, “
Extension of the piecewise parabolic method to one-dimensional relativistic hydrodynamics
,”
J. Comput. Phys.
123
,
1
14
(
1996
).
40.
M. A.
Aloy
,
J. M.
Ibánez
,
J. M.
Martí
, and
E.
Müller
, “
Genesis: A high-resolution code for three-dimensional relativistic hydrodynamics
,”
Astrophys. J. Suppl. Ser.
122
,
151
(
1999
).
41.
W.
Zhang
and
A. I.
MacFadyen
, “
RAM: A relativistic adaptive mesh refinement hydrodynamics code
,”
Astrophys. J. Suppl. Ser.
164
,
255
(
2006
).
42.
D.
Radice
and
L.
Rezzolla
, “
THC: A new high-order finite-difference high-resolution shock-capturing code for special-relativistic hydrodynamics
,”
Astron. Astrophys.
547
,
A26
(
2012
).
43.
J.
Núñez-de La Rosa
and
C.-D.
Munz
, “
XTROEM-FV: A new code for computational astrophysics based on very high order finite-volume methods–II. relativistic hydro-and magnetohydrodynamics
,”
Mon. Not. R. Astron. Soc.
460
,
535
559
(
2016
).
44.
L.
Del Zanna
and
N.
Bucciantini
, “
An efficient shock-capturing central-type scheme for multidimensional relativistic flows-i. hydrodynamics
,”
Astron. Astrophys.
390
,
1177
1186
(
2002
).
45.
C. J.
White
,
J. M.
Stone
, and
C. F.
Gammie
, “
An extension of the Athena++ code framework for GRMHD based on advanced Riemann solvers and staggered-mesh constrained transport
,”
Astrophys. J. Suppl. Ser.
225
,
22
(
2016
).
46.
A. S.
Almgren
,
V. E.
Beckner
,
J. B.
Bell
,
M.
Day
,
L. H.
Howell
,
C.
Joggerst
,
M.
Lijewski
,
A.
Nonaka
,
M.
Singer
, and
M.
Zingale
, “
Castro: A new compressible astrophysical solver. i. hydrodynamics and self-gravity
,”
Astrophys. J.
715
,
1221
(
2010
).
47.
E. E.
Schneider
and
B. E.
Robertson
, “
Cholla: A new massively parallel hydrodynamics code for astrophysical simulation
,”
Astrophys. J. Suppl. Ser.
217
,
24
(
2015
).
48.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Addison-Wesley
,
Reading, MA
,
1971
).
49.
S.
Rosswog
, “
SPH methods in the modelling of compact objects
,”
Living Rev. Comput. Astrophys.
1
(
1
),
109
(
2015
).
50.
A.
Taub
, “
Relativistic Rankine-Hugoniot equations
,”
Phys. Rev.
74
,
328
(
1948
).
51.
J.
Synge
, “
The relativistic gas north-holland pub
,” (
1957
).
52.
A.
Mignone
and
J. C.
McKinney
, “
Equation of state in relativistic magnetohydrodynamics: Variable versus constant adiabatic index
,”
Mon. Not. R Astron. Soc.
378
,
1118
1130
(
2007
).
53.
E. F.
Toro
, “
The weighted average flux method applied to the Euler equations
,”
Philos. Trans. R. Soc. London Ser. A: Phys. Eng. Sci.
341
,
499
530
(
1992
).
54.
E. F.
Toro
, “
The HLLC Riemann solver
,”
Shock waves
29
,
1065
1082
(
2019
).
55.
A.
Mignone
and
G.
Bodo
, “
An HLLC Riemann solver for relativistic flows—I. Hydrodynamics
,”
Mon. Not. R. Astron. Soc.
364
,
126
136
(
2005
).
56.
A.
Mignone
and
G.
Bodo
, “
An HLLC Riemann solver for relativistic flows–II. Magnetohydrodynamics
,”
Mon. Not. R. Astron. Soc.
368
,
1040
1054
(
2006
).
57.
N. K.
Yamaleev
and
M. H.
Carpenter
, “
A systematic methodology for constructing high-order energy stable WENO schemes
,”
J. Comput. Phys.
228
,
4248
4272
(
2009
).
58.
P. J.
Roache
, “
Perspective: A method for uniform reporting of grid refinement studies
,”
J. Fluids Eng.
116
,
405
413
(
1994
).
59.
P. J.
Roache
, “
Quantification of uncertainty in computational fluid dynamics
,”
Annu. Rev. Fluid Mech.
29
,
123
160
(
1997
).
60.
L. F.
Richardson
, “
Ix. the approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam
,”
Philos. Trans. R. Soc. London Ser. A
210
,
307
357
(
1911
).
61.
A. E.
Perry
and
M. S.
Chong
, “
A description of eddying motions and flow patterns using critical-point concepts
,”
Annu. Rev. Fluid Mech.
19
,
125
155
(
1987
).
62.
V.
Papapostolou
,
D. H.
Wacks
,
N.
Chakraborty
,
M.
Klein
, and
H. G.
Im
, “
Enstrophy transport conditional on local flow topologies in different regimes of premixed turbulent combustion
,”
Sci. Rep.
7
,
11545
(
2017
).
63.
Q.
Zheng
,
Y.
Yang
,
J.
Wang
, and
S.
Chen
, “
Enstrophy production and flow topology in compressible isotropic turbulence with vibrational non-equilibrium
,”
J. Fluid Mech.
950
,
A21
(
2022
).
You do not currently have access to this content.