Hydraulic fracturing is a key technology for the development of deep coal-rock reservoirs. Gangue, a common rock type within coal-bearing strata, significantly influences fracture morphology after fracturing. Understanding fracture propagation in coal-rock containing gangue and effectively controlling artificial fractures remain critical challenges in fracturing operations. To address this, the study investigates the coal-bearing strata of the Benxi Formation in the Daning-Jixian area of the Ordos Basin, characterized by the presence of gangue. A three-dimensional discrete lattice model was developed to analyze the effects of gangue-related factors, including the number, thickness, dip angle, and type, on hydraulic fracturing. The fracture propagation patterns and stimulation effects under these factors were systematically compared. Using node path tracking and post-processing techniques, the study identified the fracturing characteristics and fracture propagation modes at different stages. The findings indicate that gangue characteristics significantly impact fracture morphology and propagation paths. Specifically, an increase in the number of gangue layers enhances fracture complexity but reduces the effective stimulation ratio. Gangue thickness positively correlates with fracture tortuosity and inversely correlates with the effective stimulation ratio. The dip angle of gangue determines the direction of fracture propagation but has minimal influence on the stimulation area. The gangue type also affects fracture morphology; for instance, sandstone gangue leads to narrower fractures and more interface fractures at the sandstone–coal boundary compared to mudstone gangue. Fracture propagation, characterized by energy changes, can be divided into four distinct stages: Stage I (initial injection phase), Stage II (onset of fracture propagation), Stage III (fluid energy storage within gangue), and Stage IV (fracture penetration through gangue). These stages are marked by variations in fluid injection energy, fluctuation energy, surface energy, and strain energy as the fracture penetrates the layer, deflects, and forms horizontal fractures. The simulation of fracture network evolution in coal-bearing strata containing gangue provides significant theoretical guidance for understanding, predicting, and controlling fracture network morphology in coal reservoirs. These findings are instrumental for the efficient development of deep coalbed methane.

1.
Y. C.
Li
,
J. F.
Xiao
,
Y. X.
Wang
et al, “
Numerical simulation investigation on fracture propagation of fracturing for crossing coal seam roof
,”
Processes
10
(
7
),
1296
(
2022
).
2.
S.
Wang
,
H. M.
Li
, and
D. Y.
Li
, “
Numerical simulation of hydraulic fracture propagation in coal seams with discontinuous natural fracture networks
,”
Processes
6
(
8
),
113
(
2018
).
3.
Q.
Hu
,
J.
Liu
,
Q.
Li
et al, “
Study on stress and fracture evolution of sectional hydraulic fracturing of coal seam roof
,”
J. China Univ. Min. Technol.
52
(
6
),
1084
(
2023
).
4.
H. F.
Zhao
,
C. S.
Liu
,
Y. G.
Xiong
et al, “
Experimental research on hydraulic fracture propagation in group of thin coal seams
,”
J. Nat. Gas Sci. Eng.
103
,
104614
(
2022
).
5.
X. H.
Wang
,
F. S.
Zhang
,
Z. R.
Yin
et al, “
Numerical investigation of refracturing with/without temporarily plugging diverters in tight reservoirs
,”
Pet. Sci.
19
(
5
),
2210
2226
(
2022
).
6.
B.
Bohloli
and
C. J.
De Pater
, “
Experimental study on hydraulic fracturing of soft rocks: Influence of fluid rheology and confining stress
,”
J. Pet. Sci. Eng.
53
(
1–2
),
1
12
(
2006
).
7.
M. S.
Cha
,
N. B.
Alqahtani
,
B. W.
Yao
et al, “
Cryogenic fracturing of wellbores under true triaxial-confining stresses: Experimental investigation
,”
SPE J.
23
(
4
),
1271
1289
(
2018
).
8.
X. L.
Li
,
W.
Xiao
,
Z. Q.
Qu
et al, “
Rules of fracture propagation of hydraulic fracturing in radial well based on XFEM
,”
J. Pet. Explor. Prod. Technol.
8
(
4
),
1547
1557
(
2018
).
9.
Y.
Li
,
C.
Zhu
,
Y.
Zeng
et al, “
Numerical simulations of the effects of bedding planes on hydraulic fracture propagation law in oil shale
,”
Coal Geol. Explor.
51
(
11
),
44
54
(
2023
).
10.
N.
Shauer
and
C. A.
Duarte
, “
A generalized finite element method for three-dimensional hydraulic fracture propagation: Comparison with experiments
,”
Eng. Fract. Mech.
235
,
107098
(
2020
).
11.
L. S.
Huang
,
B.
Li
,
B.
Wu
et al, “
Study on the extension mechanism of hydraulic fractures in bedding coal
,”
Theor. Appl. Fract. Mech.
131
,
104431
(
2024
).
12.
K. E.
Chienchung
,
H. S. U.
Shihmeng
,
C.
Chaoshi
et al, “
Boundary element analysis of crack propagation paths in anisotropic rock
,”
Chin. J. Rock Mech. Eng.
29
(
1
),
34
42
(
2010
).
13.
M.
Chen
,
S. C.
Zhang
,
Y.
Xu
et al, “
A numerical method for simulating planar 3D multi-fracture propagation in multi-stage fracturing of horizontal wells
,”
Pet. Explor. Dev.
47
(
1
),
171
183
(
2020
).
14.
T.
Zhou
,
M.
Chen
,
S.
Zhang
et al, “
Simulation of fracture propagation and optimization of ball-sealer in-stage diversion under the effect of heterogeneous stress field
,”
Nat. Gas Ind.
40
(
3
),
82
91
(
2020
).
15.
H.
Fan
,
P. H.
Liu
,
Y. T.
Zhao
et al, “
Analytical model of hydraulic fracturing for low permeability hot dry rock reservoirs and DEM simulation base on fluid-solid coupling
,”
Processes
11
(
4
),
976
(
2023
).
16.
P.
Tan
,
Y.
Jin
,
Z. Y.
Xiong
et al, “
Effect of interface property on hydraulic fracture vertical propagation behavior in layered formation based on discrete element modeling
,”
J. Geophys. Eng.
15
(
4
),
1542
1550
(
2018
).
17.
P.
Gupta
and
C. A.
Duarte
, “
Coupled formulation and algorithms for the simulation of non-planar three-dimensional hydraulic fractures using the generalized finite element method
,”
Int. J. Numer. Anal. Methods Geomech.
40
(
10
),
1402
1437
(
2016
).
18.
X. Q.
Liu
,
Z. Q.
Qu
,
T. K.
Guo
et al, “
Numerical simulation of artificial fracture propagation in Shale gas reservoirs based on FPS-cohesive finite element method
,”
Geofluids
2019
,
402392
.
19.
F. M.
Mukhtar
and
C. A.
Duarte
, “
Coupled multiphysics 3-D generalized finite element method simulations of hydraulic fracture propagation experiments
,”
Eng. Fract. Mech.
276
,
108874
(
2022
).
20.
J. H.
Yuan
,
Y. Q.
Mao
, and
C. P.
Chen
, “
Multiple-phase-field modeling for fracture of composite materials
,”
Mech. Adv. Mater. Struct.
29
(
28
),
7476
7490
(
2022
).
21.
Y. S.
Lo
,
M. J.
Borden
,
K.
Ravi-Chandar
et al, “
A phase-field model for fatigue crack growth
,”
J. Mech. Phys. Solids
132
,
103684
(
2019
).
22.
Y.
Heider
, “
A review on phase-field modeling of hydraulic fracturing
,”
Eng. Fract. Mech.
253
,
107881
(
2021
).
23.
Z. Y.
Liu
,
H. F.
Zhao
,
W.
Zhang
et al, “
Energy mechanism of gas channeling channels in complex fracture networks for CO2 injection in ultra-low permeability reservoirs
,”
Geoenergy Sci. Eng.
243
,
213341
(
2024
).
24.
S.
Tang
,
D.
Tang
,
J.
Yang
et al, “
Pore structure characteristics and gas storage potential of deep coal reservoirs in Daning-Jixian block of Ordos Basin
,”
Acta Pet. Sin.
44
(
11
),
1854
(
2023
).
25.
S.
Wang
,
Y.
Jin
,
P.
Tan
et al, “
Experimental investigation on hydraulic fracture propagation of coal shale reservoirs under multi-gas co-production
,”
Chin. J. Geotech. Eng.
44
(
12
),
2290
2296
(
2022
).
26.
X. Q.
Liu
,
V.
Rasouli
,
T. K.
Guo
et al, “
Numerical simulation of stress shadow in multiple cluster hydraulic fracturing in horizontal wells based on lattice modelling
,”
Eng. Fract. Mech.
238
,
107278
(
2020
).
27.
Z. Y.
Cong
,
Y. W.
Li
,
J. Z.
Tang
et al, “
Numerical simulation of hydraulic fracture height layer-through propagation based on three-dimensional lattice method
,”
Eng. Fract. Mech.
264
,
108331
(
2022
).
28.
M.
Pierce
,
P.
Cundall
,
D.
Potyondy
et al, “
A synthetic rock mass model for jointed rock
,” in
Proceedings of the 1st Canada - US Rock Mechanics Symposium
,
2007
.
29.
B.
Damjanac
and
P.
Cundall
, “
Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs
,”
Comput. Geotech.
71
,
283
294
(
2016
).
30.
K. K.
Zhao
,
D.
Stead
,
H. P.
Kang
et al, “
Three-dimensional simulation of hydraulic fracture propagation height in layered formations
,”
Environ. Earth Sci.
80
(
12
),
435
(
2021
).
31.
H. F.
Zhao
,
X. H.
Wang
,
W.
Wang
et al, “
A simulation method based on energy criterion for network fracturing in shale gas reservoirs
,”
J. Nat. Gas Sci. Eng.
52
,
295
303
(
2018
).
32.
J.
Geertsma
and
F.
De Klerk
, “
Rapid method of predicting width and extent of hydraulically induced fractures
,”
J. Pet. Technol.
21
(
12
),
1571
1581
(
1969
).
33.
L. H.
Ribeiro
and
M. M.
Sharma
, “
A new three-dimensional, compositional, model for hydraulic fracturing with energized fluids
,” in
Proceedings of SPE Annual Technical Conference and Exhibition
(
OnePerto
,
2012
), Paper No. SPE-159812-MS.
You do not currently have access to this content.