Effects of constrained damping and multi-segments on the hydrodynamic response of floating structures under wave action are clarified by an improved viscoelasticity-hydrodynamic coupled model, in which shear deformation of viscoelastic core constrained by surfaces bending in the floating sandwich multi-segments is modeled and coupled of the material viscoelasticity, structural dynamic, and potential flow theory. Then, higher-order hysteresis-hydrodynamic equations with articulated-separated continuity conditions, as well as velocity potential functions for plate-covered and free-water areas, are calculated using the perturbation and partition matching methods. As an illustration, a floating multi-segments structure, consisting of high-stiffness elastic-surface layers and a low-stiffness viscoelastic-core layer, is analyzed. The analytical functions of deflection, bending moment, and shear force, incorporating fluid-structure-component-material parameters, have been formulated, thereby enabling a direct assessment of the effects of constrained-damping and multi-segment configurations on hydrodynamic response to wave action, which are expected to provide new ideas for novel marine structures.

1.
E.
Watanabe
,
T.
Utsunomiya
, and
C. M.
Wang
, “
Hydroelastic analysis of pontoon-type VLFS: A literature survey
,”
Eng. Struct.
26
,
245
(
2004
).
2.
H.
Suzuki
, “
Overview of Megafloat: Concept, design criteria, analysis, and design
,”
Mar. Struct.
18
,
111
(
2005
).
3.
Y.-G.
Lee
,
H.-J.
Joo
, and
S.-J.
Yoon
, “
Design and installation of floating type photovoltaic energy generation system using FRP members
,”
Sol. Energy
108
,
13
(
2014
).
4.
S.
Ohmatsu
, “
Overview: Research on wave loading and responses of VLFS
,”
Mar. Struct.
18
,
149
(
2005
).
5.
S. C.
Barman
,
S.
Boral
, and
T.
Sahoo
, “
Bragg scattering of flexural-gravity waves by a series of polynyas in the context of blocking dynamics
,”
Phys. Fluids
35
,
016601
(
2023
).
6.
S. C.
Barman
,
S.
Das
,
T.
Sahoo
, and
M. H.
Meylan
, “
Scattering of flexural-gravity waves by a crack in a floating ice sheet due to mode conversion during blocking
,”
J. Fluid Mech.
916
,
A11
(
2021
).
7.
S. C.
Barman
and
A.
Chanda
, “
Expansion formulae for flexural-gravity wave propagation during wave blocking
,”
Proc. R. Soc. A
480
,
20230647
(
2024
).
8.
A.
Chanda
,
S. C.
Barman
,
T.
Sahoo
, and
M. H.
Meylan
, “
Flexural-gravity wave scattering by an array of bottom-standing partial porous barriers in the framework of Bragg resonance and blocking dynamics
,”
Phys. Fluids
36
,
012129
(
2024
).
9.
S.
Okada
, “
Study on edge shape of very large floating structures to reduce motion
,”
J. Soc. Nav. Archit. Jpn.
1998
,
263
.
10.
M.
Shakouri
,
M. R.
Permoon
,
A.
Askarian
, and
H.
Haddadpour
, “
Dynamic analysis of three-layer cylindrical shells with fractional viscoelastic core and functionally graded face layers
,”
J. Vib. Control
27
,
2738
(
2021
).
11.
Z.
Sun
,
Z.
Mei
,
Y.
Li
,
H.
Gong
,
G.
Wang
, and
Q.
Wang
, “
Design of lightweight damping core for composite sandwich structure
,”
Polym. Compos.
43
,
6578
(
2022
).
12.
R.
Kandasamy
,
F.
Cui
,
N.
Townsend
,
C. C.
Foo
,
J.
Guo
,
A.
Shenoi
, and
Y.
Xiong
, “
A review of vibration control methods for marine offshore structures
,”
Ocean Eng.
127
,
279
(
2016
).
13.
M.
Rahman
,
Z. C.
Ong
,
W. T.
Chong
,
S.
Julai
, and
S. Y.
Khoo
, “
Performance enhancement of wind turbine systems with vibration control: A review
,”
Renewable Sustainable Energy Rev.
51
,
43
(
2015
).
14.
E. M.
Kerwin
, Jr.
, “
Damping of flexural waves by a constrained viscoelastic layer
,”
J. Acoust. Soc. Am.
31
,
952
(
1959
).
15.
R. A.
DiTaranto
, “
Theory of vibratory bending for elastic and viscoelastic layered finite-length beams
,”
J. Appl. Mech.
32
,
881
(
1965
).
16.
D. J.
Mead
and
S.
Markus
, “
The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions
,”
J. Sound Vib.
10
,
163
(
1969
).
17.
D. J.
Mead
, “
A comparison of some equations for the flexural vibration of damped sandwich beams
,”
J. Sound Vib.
83
,
363
(
1982
).
18.
E. M.
Austin
and
D. J.
Inman
, “
Some pitfalls of simplified modeling for viscoelastic sandwich beams
,”
J. Vib. Acoust.
122
,
434
(
2000
).
19.
H.
Hu
,
S.
Belouettar
,
M.
Potier-Ferry
, and
E. M.
Daya
, “
Review and assessment of various theories for modeling sandwich composites
,”
Compos. Struct.
84
,
282
(
2008
).
20.
Z.
Huang
,
Z.
Qin
, and
F.
Chu
, “
Damping mechanism of elastic–viscoelastic–elastic sandwich structures
,”
Compos. Struct.
153
,
96
(
2016
).
21.
S.
Nagiredla
,
S.
Joladarashi
, and
H.
Kumar
, “
Modelling and predicting the dynamic response of an axially graded viscoelastic core sandwich beam
,”
Def. Technol.
30
,
32
(
2023
).
22.
L.
Huang
,
W.
Lu
,
J.
Yang
, and
Q.
Dong
, “
Experimental study on surface waves around a novel model of ice floe
,”
Cold Reg. Sci. Technol.
193
,
103380
(
2022
).
23.
H.
Fang
,
H. D.
Zhu
,
A. J.
Li
,
H. C.
Liu
,
S. L.
Luo
,
Y. L.
Liu
,
Y.
Liu
, and
H. J.
Li
, “
A multiscale material-structure-hydroelasticity coupled analytical model for floating sandwich structures with hierarchical cores
,”
Mar. Struct.
79
,
103055
(
2021
).
24.
Y.
Chen
,
H.
Ma
,
A.
Li
,
H.
Fang
,
Y.
Liu
, and
H.
Li
, “
Hydroelastic analysis of double-segment floating sandwich structures under wave action
,”
Ocean Eng.
260
,
111993
(
2022
).
25.
A.-J.
Li
,
H.
Fang
, and
Y.
Liu
, “
Hydroelastic analysis of interaction between water waves and a floating laminated disk
,”
Phys. Fluids
34
,
047121
(
2022
).
26.
D.
Xia
,
J. W.
Kim
, and
R. C.
Ertekin
, “
On the hydroelastic behavior of two-dimensional articulated plates
,”
Mar. Struct.
13
,
261
(
2000
).
27.
S.
Fu
,
T.
Moan
,
X.
Chen
, and
W.
Cui
, “
Hydroelastic analysis of flexible floating interconnected structures
,”
Ocean Eng.
34
,
1516
(
2007
).
28.
C. M.
Wang
,
M.
Riyansyah
, and
Y. S.
Choo
, “
Reducing hydroelastic response of interconnected floating beams using semi-rigid connections
,” in
Proceedings of the ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering
(
ASME
,
2009
), pp.
1419
1425
.
29.
J.-S.
Yoon
,
S.-P.
Cho
,
R. G.
Jiwinangun
, and
P.-S.
Lee
, “
Hydroelastic analysis of floating plates with multiple hinge connections in regular waves
,”
Mar. Struct.
36
,
65
(
2014
).
30.
D.
Shuangxing
and
C. R.
Ertekin
, “
Dynamic response analysis of a flexibly joined, multi-module very large floating structure
,” in
OCEANS 91 Proceedings
(
IEEE
,
1991
), pp.
1286
1293
.
31.
S. C.
Mohapatra
and
C. G.
Soares
, “
Interaction of ocean waves with floating and submerged horizontal flexible structures in three-dimensions
,”
Appl. Ocean Res.
83
,
136
(
2019
).
32.
B.
Teng
,
Y.
Gou
,
L.
Cheng
, and
S.
Liu
, “
Draft effect on wave action with a semi-infinite elastic plate
,”
Acta Oceanol. Sin.
25
(
6
),
116
127
(
2006
).
33.
Y.
Cheng
,
C.
Ji
,
G.
Zhai
, and
O.
Gaidai
, “
Hydroelastic analysis of oblique irregular waves with a pontoon-type VLFS edged with dual inclined perforated plates
,”
Mar. Struct.
49
,
31
(
2016
).
34.
C. M.
Chiang
,
M.
Stiassnie
, and
D. K. P.
Yue
,
Theory and Applications of Ocean Surface Waves
(
World Scientific
,
2005
).
35.
F. J.
Mendez
and
I. J.
Losada
, “
A perturbation method to solve dispersion equations for water waves over dissipative media
,”
Coastal Eng.
51
,
81
(
2004
).
36.
M.
Zhu
,
H.
Fang
,
A.
Li
, and
Y.
Liu
, “
A material–structure-wave integrated hydro-viscoelastic model for floating composite structure with generalized boundary
,”
Phys. Fluids
35
,
127101
(
2023
).
37.
D. J.
Mead
and
S.
Markus
, “
Loss factors and resonant frequencies of encastré damped sandwich beams
,”
J. Sound Vib.
12
,
99
(
1970
).
You do not currently have access to this content.