The influence of parameters on the hydrodynamic characteristics of OWC (oscillating water column) devices exhibits a coupling phenomenon, which is frequently neglected. To elucidate the comprehensive influence and its mechanism of structure parameters on the hydrodynamic characteristics of offshore OWC devices, a structure with a bottom plate was selected in this study. Through numerical simulation, the hydrodynamic characteristics of the chamber with variations in PTO (power take off) coefficient α, chamber length Bs, internal depth Jn, and under water length of front wall Je with different wave conditions are investigated. The following conclusions are primarily drawn: The research method of using the relative wavelength L/Bs as a non-dimensional parameter and solely varying the wavelength L has its drawbacks. In cases that L/Bs is held constant, the efficiency of chambers differing only in Bs can vary by more than 70%. The influence of each parameter on the effectiveness is interrelated. Chambers with a lower α exhibit a more pronounced impact of Bs. The efficiency of device with a smaller relative wavelength L/Bs is more significantly affected by the Jn. The mechanism by which the parameters affect efficiency is primarily since chambers with shorter Bs or greater Jn exhibit smaller deformations during internal liquid surface oscillation, resembling a more uniform oscillating water column. This allows more energy to be utilized for pushing air in and out of the chamber above, thereby enhancing the energy conversion capability. The results of this research can provide valuable insights for the design of OWC devices.

1.
A.
Mendonça
,
J.
Dias
,
E.
Didier
,
C. J. E. M.
Fortes
,
M. G.
Neves
,
M. T.
Reis
,
J. M. P.
Conde
,
P.
Poseiro
, and
P. R. F.
Teixeira
, “
An integrated tool for modelling oscillating water column (OWC) wave energy converters (WEC) in vertical breakwaters
,”
J. Hydro-environ. Res.
19
,
198
213
(
2018
).
2.
K.
Rezanejad
,
J.
Bhattacharjee
, and
C.
Guedes Soares
, “
Analytical and numerical study of dual-chamber oscillating water columns on stepped bottom
,”
Renew. Energy
75
,
272
282
(
2015
).
3.
S.
Zheng
,
Y.
Zhang
, and
G.
Iglesias
, “
Coast/breakwater-integrated OWC: A theoretical model
,”
Mar. Struct.
66
,
121
135
(
2019
).
4.
Y.
Zhou
,
D.
Ning
,
W.
Shi
,
L.
Johanning
, and
D.
Liang
, “
Hydrodynamic investigation on an OWC wave energy converter integrated into an offshore wind turbine monopile
,”
Coast. Eng.
162
,
103731
(
2020
).
5.
C.
Perez-Collazo
,
D.
Greaves
, and
G.
Iglesias
, “
Hydrodynamic response of the WEC sub-system of a novel hybrid wind-wave energy converter
,”
Energy Convers. Manag.
171
,
307
325
(
2018
).
6.
A.
Mora
,
E.
Bautista
, and
F.
Méndez
, “
Influence of a tapered and slender wave collector on the increment of the efficiency of an oscillating water column wave-energy converter
,”
Ocean Eng.
129
,
20
36
(
2017
).
7.
G.
Malara
and
F.
Arena
, “
Response of U-Oscillating Water Column arrays: Semi-analytical approach and numerical results
,”
Renew. Energy
138
,
1152
1165
(
2019
).
8.
G.
Malara
,
R. P. F.
Gomes
,
F.
Arena
,
J. C. C.
Henriques
,
L. M. C.
Gato
, and
A. F. O.
Falcão
, “
The influence of three-dimensional effects on the performance of U-type oscillating water column wave energy harvesters
,”
Renew. Energy
111
,
506
522
(
2017
).
9.
S.
Zheng
,
A.
Antonini
,
Y.
Zhang
,
D.
Greaves
,
J.
Miles
, and
G.
Iglesias
, “
Wave power extraction from multiple oscillating water columns along a straight coast
,”
J. Fluid Mech.
878
,
445
480
(
2019
).
10.
N.
Dizadji
and
S. E.
Sajadian
, “
Modeling and optimization of the chamber of OWC system
,”
Energy
36
(
5
),
2360
2366
(
2011
).
11.
S.
John Ashlin
,
V.
Sundar
, and
S. A.
Sannasiraj
, “
Effects of bottom profile of an oscillating water column device on its hydrodynamic characteristics
,”
Renew. Energy
96
,
341
353
(
2016
).
12.
J.
Fairhurst
and
J. L.
Van Niekerk
, “
Modelling, simulation and testing of a submerged oscillating water column
,”
Int. J. Mar. Energy
16
,
181
195
(
2016
).
13.
D.-Z.
Ning
,
R.-Q.
Wang
,
Q.-P.
Zou
, and
B.
Teng
, “
An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter
,”
Appl. Energy
168
,
636
648
(
2016
).
14.
A.
Elhanafi
and
C. J.
Kim
, “
Experimental and numerical investigation on wave height and power take–off damping effects on the hydrodynamic performance of an offshore–stationary OWC wave energy converter
,”
Renew. Energy
125
,
518
528
(
2018
).
15.
D.
Ning
,
R.
Wang
,
L.
Chen
, and
K.
Sun
, “
Experimental investigation of a land-based dual-chamber OWC wave energy converter
,”
Renew. Sustain. Energy Rev.
105
,
48
60
(
2019
).
16.
L.
Rodríguez
,
B.
Pereiras
,
J.
Fernández-Oro
, and
F.
Castro
, “
Optimization and experimental tests of a centrifugal turbine for an OWC device equipped with a twin turbines configuration
,”
Energy
171
,
710
720
(
2019
).
17.
C.
Xu
and
Z.
Huang
, “
A dual-functional wave-power plant for wave-energy extraction and shore protection: A wave-flume study
,”
Appl. Energy
229
,
963
976
(
2018
).
18.
Z.
Liu
,
C.
Xu
, and
K.
Kim
, “
Overall performance of a model OWC system under the free-spinning mode: An experimental study
,”
Ocean Eng.
227
,
108890
(
2021
).
19.
A.
Taherian Haghighi
,
A. H.
Nikseresht
, and
M.
Hayati
, “
Numerical analysis of hydrodynamic performance of a dual-chamber Oscillating Water Column
,”
Energy
221
,
119892
(
2021
).
20.
A.
Çelik
and
A.
Altunkaynak
, “
An in depth experimental investigation into effects of incident wave characteristics front wall opening and PTO damping on the water column displacement and air differential pressure in an OWC chamber
,”
Energy
230
,
120827
(
2021
).
21.
P. R. F.
Teixeira
,
D. P.
Davyt
,
E.
Didier
, and
R.
Ramalhais
, “
Numerical simulation of an oscillating water column device using a code based on Navier–Stokes equations
,”
Energy
61
,
513
530
(
2013
).
22.
Z.
Liu
,
C.
Xu
,
K.
Kim
,
J.
Choi
, and
B.
Hyun
, “
An integrated numerical model for the chamber-turbine system of an oscillating water column wave energy converter
,”
Renew. Sustain. Energy Rev.
149
,
111350
(
2021
).
23.
Z.
Huang
and
S.
Huang
, “
Two-phase flow simulations of fixed 3D oscillating water columns using OpenFOAM: A comparison of two methods for modeling quadratic power takeoff
,”
Ocean Eng.
232
,
108600
(
2021
).
24.
I.
Simonetti
and
L.
Cappietti
, “
Hydraulic performance of oscillating water column structures as anti-reflection devices to reduce harbour agitation
,”
Coast. Eng.
165
,
103837
(
2021
).
25.
D.
Ning
,
L.
Fu
,
Y.
Zhou
,
R.
Mayon
, and
Y.
Zhang
, “
Hydrodynamic performance of a land-based multi-chamber OWC wave energy capture system: An experimental study
,”
Coast. Eng.
190
,
104510
(
2024
).
26.
J. F. M.
Gadelho
,
K.
Rezanejad
,
C.
Guedes Soares
,
J. A.
Santos
,
G.
Anastas
, and
C. J. E. M.
Fortes
, “
Experimental study of an onshore dual chamber oscillating water column device
,”
Ocean Eng.
300
,
117240
(
2024
).
27.
E.
Didier
and
P. R. F.
Teixeira
, “
Numerical analysis of 3D hydrodynamics and performance of an array of oscillating water column wave energy converters integrated into a vertical breakwater
,”
Renew. Energy
225
,
120297
(
2024
).
28.
M. R.
Mia
,
M.
Zhao
,
H.
Wu
, and
A.
Munir
, “
Numerical investigation of scaling effect in two-dimensional oscillating water column wave energy devices for harvesting wave energy
,”
Renew. Energy
178
,
1381
1397
(
2021
).
29.
K.
Trivedi
and
S.
Koley
, “
Mathematical modeling of breakwater-integrated oscillating water column wave energy converter devices under irregular incident waves
,”
Renew. Energy
178
,
403
419
(
2021
).
30.
M.
Masoomi
,
M.
Yousefifard
, and
A.
Mosavi
, “
Efficiency assessment of an amended oscillating water column using OpenFOAM
,”
Sustainability
13
(
10
),
5633
(
2021
).
31.
M. M.
Samak
,
H.
Elgamal
, and
A. M.
Nagib Elmekawy
, “
The contribution of L-shaped front wall in the improvement of the oscillating water column wave energy converter performance
,”
Energy
226
,
120421
(
2021
).
32.
S.
Xu
,
K.
Rezanejad
,
J. F. M.
Gadelho
,
S.
Wang
, and
C.
Guedes Soares
, “
Experimental investigation on a dual chamber floating oscillating water column moored by flexible mooring systems
,”
Ocean Eng.
216
,
108083
(
2020
).
33.
S.
Zheng
,
A.
Antonini
,
Y.
Zhang
,
J.
Miles
,
D.
Greaves
,
G.
Zhu
, and
G.
Iglesias
, “
Hydrodynamic performance of a multi-Oscillating Water Column (OWC) platform
,”
Appl. Ocean Res.
99
,
102168
(
2020
).
34.
I.
Simonetti
,
L.
Cappietti
,
H.
Elsafti
, and
H.
Oumeraci
, “
Evaluation of air compressibility effects on the performance of fixed OWC wave energy converters using CFD modelling
,”
Renew. Energy
119
,
741
753
(
2018
).
35.
M.
Li
,
R.
Wu
,
B.
Wu
, and
Y.
Zhang
, “
Experimental study on conversion efficiency of a floating OWC pentagonal backward bent duct buoy wave energy converter
,”
China Ocean Eng.
33
(
3
),
297
308
(
2019
).
36.
C.
Wang
,
Y.
Zhang
, and
Z.
Deng
, “
Theoretical analysis on hydrodynamic performance for a dual-chamber oscillating water column device with a pitching front lip-wall
,”
Energy
226
,
120326
(
2021
).
37.
C.
Wang
and
Y.
Zhang
, “
Wave power extraction analysis for an oscillating water column device with various surging lip-walls
,”
Ocean Eng.
220
,
108483
(
2021
).
38.
M.
Zabihi
,
S.
Mazaheri
,
M.
Montazeri Namin
, and
A.
Rezaee Mazyak
, “
Irregular wave interaction with an offshore OWC wave energy converter
,”
Ocean Eng.
222
,
108619
(
2021
).
39.
C.
Wang
and
Y.
Zhang
, “
Wave power extraction analysis on a dual-chamber oscillating water column device composed by two separated units: An analytical study
,”
Appl. Ocean Res.
111
,
102634
(
2021
).
40.
S.
Ribeiro E Silva
,
R. P. F.
Gomes
,
B. S.
Lopes
,
A. A. D.
Carrelhas
,
L. M. C.
Gato
,
J. C. C.
Henriques
,
J. M.
Gordo
, and
A. F. O.
Falcão
, “
Model testing of a floating wave energy converter with an internal U-shaped oscillating water column
,”
Energy Convers. Manag.
240
,
114211
(
2021
).
41.
S.
Doyle
and
G. A.
Aggidis
, “
Experimental investigation and performance comparison of a 1 single OWC, array and M-OWC
,”
Renew. Energy
168
,
365
374
(
2021
).
42.
M.
Peymani
,
A. H.
Nikseresht
, and
H. B.
Bingham
, “
A 3D numerical investigation of the influence of the geometrical parameters of an I-beam attenuator OWC on its performance at the resonance period
,”
Energy
286
,
129542
(
2024
).
43.
M.
Qu
,
D.
Yu
,
Y.
Li
, and
Z.
Gao
, “
Effect of relative chamber width on energy conversion and mechanical characteristics of the offshore OWC device: A numerical study
,”
Energy
275
,
127372
(
2023
).
44.
B.
He
,
Y.
Lin
,
W.
Li
,
M.
Wei
, and
F.
He
, “
Characteristics of vortex evolution around a cylindrical oscillating water column device: An experimental study
,”
Phys. Fluids
35
(
12
),
125142
(
2023
).
45.
F.
He
,
Y.
Lin
,
J.
Pan
, and
M.
Wei
, “
Experimental investigation of vortex evolution around oscillating water column wave energy converter using particle image velocimetry
,”
Phys. Fluids
35
(
1
),
015151
(
2023
).
46.
Y.
Zhang
,
W.
Zhu
,
Q.
Xu
,
D.
Kong
, and
X.
Dong
, “
Hydrodynamic performance of a pile-supported oscillating water column breakwater in front of a partially reflecting seawall
,”
Phys. Fluids
36
(
7
),
077139
(
2024
).
47.
J.
Gao
,
C.
Mi
,
Z.
Song
, and
Y.
Liu
, “
Transient gap resonance between two closely-spaced boxes triggered by nonlinear focused wave groups
,”
Ocean Eng.
305
,
117938
(
2024
).
48.
S.
Gong
,
J.
Gao
,
Z.
Song
,
H.
Shi
, and
Y.
Liu
, “
Hydrodynamics of fluid resonance in a narrow gap between two boxes with different breadths
,”
Ocean Eng.
311
,
118986
(
2024
).
49.
M. R.
Mia
,
M.
Zhao
, and
H.
Wu
, “
Effects of heave motion of an elastically supported floating oscillating water column device on wave energy harvesting efficiency
,”
Phys. Fluids
35
(
1
),
017115
(
2023
).
50.
H. G.
Weller
,
G.
Tabor
,
H.
Jasak
, and
C.
Fureby
, “
A tensorial approach to computational continuum mechanics using object-oriented techniques
,”
Comput. Phys.
12
(
6
),
620
631
(
1998
).
51.
P. R. F.
Teixeira
,
R. A. A. C.
Gonçalves
, and
E.
Didier
, “
A RANS-VoF numerical model to analyze the output power of an OWC-WEC equipped with wells and impulse turbines in a hypothetical sea-state
,”
China Ocean Eng.
34
(
6
),
760
771
(
2020
).
52.
Y.
Zhou
,
D.
Ning
,
L.
Chen
, and
G.
Iglesias
, “
Nonlinear hydrodynamic modeling of an offshore stationary multi-oscillating water column platform
,”
Ocean Eng.
227
,
108919
(
2021
).
53.
F.
He
and
Z.
Huang
, “
Characteristics of orifices for modeling nonlinear power take-off in wave-flume tests of oscillating water column devices
,”
J. Zhejiang Univ. Sci. A
18
(
5
),
329
345
(
2017
).
54.
I.
Crema
,
I.
Simonetti
,
L.
Cappietti
, and
H.
Oumeraci
, “
Laboratory experiments on oscillating water column wave energy converters integrated in a very large floating structure
,” in
11th European Wave and Tidal Energy Conference, EWTEC 2015
, Nantes, France,
2015
.
55.
I.
Simonetti
,
I.
Crema
,
L.
Cappietti
,
H.
Elsafti
, and
H.
Oumeraci
, “
Site-specific optimization of an OWC wave energy converter in a Mediterranean area
,”
Proceedings of Renew 2016, 2nd International Conference on Renewable Energies Offshore
,
2016
.
You do not currently have access to this content.