This paper studies two related stochastic processes driven by Brownian motion: the Cox–Ingersoll–Ross (CIR) process and the Bessel process. We investigate their shared and distinct properties, focusing on time-asymptotic growth rates, distance between the processes in integral norms, and parameter estimation. The squared Bessel process is shown to be a phase transition of the CIR process and can be approximated by a sequence of CIR processes. Differences in stochastic stability are also highlighted, with the Bessel process displaying instability while the CIR process remains ergodic and stable.
REFERENCES
1.
A.
Einstein
, “
Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen
,” Ann. Phys.
322
, 549
–560
(1905
).2.
M.
Von Smoluchowski
, “
Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen
,” Ann. Phys.
326
, 756
–780
(1906
).3.
A.
Einstein
and
M.
von Smoluchowski
, Untersuchungen über die Theorie der Brownschen Bewegung. Abhandlung Über die Brownsche Bewegung und verwandte Erscheinungen
, Ostwalds Klassiker der exakten Wissenschaften, Band 199 (
Verlag Harri Deutsch
, 1997
).4.
A.
Einstein
, Investigations on the Theory of the Brownian Movement
(
Dover publications
,
New York
, 1956
), edited with notes by R. Fürth.5.
N.
Ikeda
and
S.
Watanabe
, Stochastic Differential Equations and Diffusion Processes
, 2nd ed., North-Holland Mathematical Library, Vol.
24
(
North-Holland Publishing Co
.,
Amsterdam
;
Kodansha, Ltd
.,
Tokyo
, 1989
), pp. xvi+555
.6.
A. S.
Cherny
and
H.-J.
Engelbert
, Singular Stochastic Differential Equations
, Lecture Notes in Mathematics, Vol.
1858
(
Springer-Verlag
,
Berlin
, 2005
), pp. viii+128
.7.
D.
Brigo
and
F.
Mercurio
, “
A deterministic-shift extension of analytically-tractable and time-homogeneous short-rate models
,” Finance Stochast.
5
, 369
–387
(2001
).8.
M.
Di Francesco
and
K.
Kamm
, “
How to handle negative interest rates in a CIR framework
,” SeMA J.
79
, 593
–618
(2022
).9.
Y.
Maghsoodi
, “
Solution of the extended CIR term structure and bond option valuation
,” Math. Finance
6
, 89
–109
(1996
).10.
G.
Orlando
,
R. M.
Mininni
, and
M.
Bufalo
, “
Interest rates calibration with a CIR model
,” J. Risk Finance
20
, 370
–387
(2019
).11.
C.
Kelly
and
G. J.
Lord
, “
An adaptive splitting method for the Cox–Ingersoll–Ross process
,” Appl. Numer. Math.
186
, 252
–273
(2023
).12.
J. C.
Cox
,
J. E.
Ingersoll
, and
S. A.
Ross
, “
A theory of the term structure of interest rates
,” Econometrica
53
, 385
–407
(1985
).13.
A.
Göing-Jaeschke
and
M.
Yor
, “
A survey and some generalizations of Bessel processes
,” Bernoulli
9
, 313
–349
(2003
).14.
D.
Revuz
and
M.
Yor
, Continuous Martingales and Brownian Motion
, 3rd ed., Grundlehren der mathematischen Wissenschaften, Vol.
293
(
Springer-Verlag
,
Berlin
, 1999
), pp. xiv+602
.15.
I.
Karatzas
and
S. E.
Shreve
, Brownian Motion and Stochastic Calculus
, 2nd ed., Graduate Texts in Mathematics, Vol.
113
(
Springer-Verlag
,
New York
, 1991
), pp. xxiv+470
.16.
Y.
Mishura
,
A.
Pilipenko
, and
A.
Yurchenko-Tytarenko
, “
Low-dimensional Cox–Ingersoll–Ross process
,” Stochastics
96
, 1530
(2024
).17.
Y.
Mishura
and
A.
Yurchenko-Tytarenko
, “
Standard and fractional reflected Ornstein–Uhlenbeck processes as the limits of square roots of Cox–Ingersoll–Ross processes
,” Stochastics
95
, 99
–117
(2023
).18.
K.
Oldham
,
J.
Myland
, and
J.
Spanier
, An Atlas of Functions
, 2nd ed. (
Springer
,
New York
, 2009
).19.
A.
Alfonsi
, Affine Diffusions and Related Processes: Simulation, Theory and Applications
, Bocconi & Springer Series, Vol. 6 (
Springer
,
Cham
;
Bocconi University Press
,
Milan
, 2015
), pp. xiv+252
.20.
O.
Dehtiar
,
Y.
Mishura
, and
K.
Ralchenko
, “
Two methods of estimation of the drift parameters of the Cox–Ingersoll–Ross process: Continuous observations
,” Comm. Statist. Theory Methods
51
, 6818
–6833
(2022
).21.
O.
Okhrin
,
M.
Rockinger
, and
M.
Schmid
, “
Distributional properties of continuous time processes: From CIR to Bates
,” AStA Adv. Stat. Anal.
107
, 397
–419
(2023
).22.
M.
Ben Alaya
and
A.
Kebaier
, “
Asymptotic behavior of the maximum likelihood estimator for ergodic and nonergodic square-root diffusions
,” Stoch. Anal. Appl.
31
, 552
–573
(2013
).23.
Y.
Mishura
,
S.
Posashkova
, and
G.
Shevchenko
, “
Properties of solutions of stochastic differential equations with nonhomogeneous coefficients and non-Lipschitz diffusion
,” Theor. Probability Math. Statist.
79
, 117
–126
(2009
).24.
T.
Yamada
and
S.
Watanabe
, “
On the uniqueness of solutions of stochastic differential equations
,” J. Math. Kyoto Univ.
11
(1
), 155
–167
(1971
).25.
Y.
Mishura
and
G.
Shevchenko
, Theory and Statistical Applications of Stochastic Processes
(
ISTE Ltd
;
John Wiley & Sons
, 2017
).26.
R. S.
Liptser
and
A. N.
Shiryayev
, Theory of Martingales
, Mathematics and its Applications (Soviet Series), Vol.
49
(
Kluwer Academic Publishers Group
,
Dordrecht
, 1989
), pp. xiv+792
.27.
G.
Kulinich
,
S.
Kushnirenko
, and
Y.
Mishura
, Asymptotic Analysis of Unstable Solutions of Stochastic Differential Equations
, Bocconi & Springer Series, Vol.
9
(
Bocconi University Press
;
Springer
, 2020
), p. 248
.28.
A. G.
Cherstvy
,
A. V.
Chechkin
, and
R.
Metzler
, “
Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes
,” New J. Phys.
15
, 083039
(2013
).29.
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
, edited by
M.
Abramowitz
and
I. A.
Stegun
(
Dover Publications, Inc
.,
New York
, 1992
).© 2025 Author(s). Published under an exclusive license by AIP Publishing.
2025
Author(s)
You do not currently have access to this content.