This paper studies two related stochastic processes driven by Brownian motion: the Cox–Ingersoll–Ross (CIR) process and the Bessel process. We investigate their shared and distinct properties, focusing on time-asymptotic growth rates, distance between the processes in integral norms, and parameter estimation. The squared Bessel process is shown to be a phase transition of the CIR process and can be approximated by a sequence of CIR processes. Differences in stochastic stability are also highlighted, with the Bessel process displaying instability while the CIR process remains ergodic and stable.

1.
A.
Einstein
, “
Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen
,”
Ann. Phys.
322
,
549
560
(
1905
).
2.
M.
Von Smoluchowski
, “
Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen
,”
Ann. Phys.
326
,
756
780
(
1906
).
3.
A.
Einstein
and
M.
von Smoluchowski
,
Untersuchungen über die Theorie der Brownschen Bewegung. Abhandlung Über die Brownsche Bewegung und verwandte Erscheinungen
, Ostwalds Klassiker der exakten Wissenschaften, Band 199 (
Verlag Harri Deutsch
,
1997
).
4.
A.
Einstein
,
Investigations on the Theory of the Brownian Movement
(
Dover publications
,
New York
,
1956
), edited with notes by R. Fürth.
5.
N.
Ikeda
and
S.
Watanabe
,
Stochastic Differential Equations and Diffusion Processes
, 2nd ed., North-Holland Mathematical Library, Vol.
24
(
North-Holland Publishing Co
.,
Amsterdam
;
Kodansha, Ltd
.,
Tokyo
,
1989
), pp. xvi+
555
.
6.
A. S.
Cherny
and
H.-J.
Engelbert
,
Singular Stochastic Differential Equations
, Lecture Notes in Mathematics, Vol.
1858
(
Springer-Verlag
,
Berlin
,
2005
), pp. viii+
128
.
7.
D.
Brigo
and
F.
Mercurio
, “
A deterministic-shift extension of analytically-tractable and time-homogeneous short-rate models
,”
Finance Stochast.
5
,
369
387
(
2001
).
8.
M.
Di Francesco
and
K.
Kamm
, “
How to handle negative interest rates in a CIR framework
,”
SeMA J.
79
,
593
618
(
2022
).
9.
Y.
Maghsoodi
, “
Solution of the extended CIR term structure and bond option valuation
,”
Math. Finance
6
,
89
109
(
1996
).
10.
G.
Orlando
,
R. M.
Mininni
, and
M.
Bufalo
, “
Interest rates calibration with a CIR model
,”
J. Risk Finance
20
,
370
387
(
2019
).
11.
C.
Kelly
and
G. J.
Lord
, “
An adaptive splitting method for the Cox–Ingersoll–Ross process
,”
Appl. Numer. Math.
186
,
252
273
(
2023
).
12.
J. C.
Cox
,
J. E.
Ingersoll
, and
S. A.
Ross
, “
A theory of the term structure of interest rates
,”
Econometrica
53
,
385
407
(
1985
).
13.
A.
Göing-Jaeschke
and
M.
Yor
, “
A survey and some generalizations of Bessel processes
,”
Bernoulli
9
,
313
349
(
2003
).
14.
D.
Revuz
and
M.
Yor
,
Continuous Martingales and Brownian Motion
, 3rd ed., Grundlehren der mathematischen Wissenschaften, Vol.
293
(
Springer-Verlag
,
Berlin
,
1999
), pp. xiv+
602
.
15.
I.
Karatzas
and
S. E.
Shreve
,
Brownian Motion and Stochastic Calculus
, 2nd ed., Graduate Texts in Mathematics, Vol.
113
(
Springer-Verlag
,
New York
,
1991
), pp.
xxiv+470
.
16.
Y.
Mishura
,
A.
Pilipenko
, and
A.
Yurchenko-Tytarenko
, “
Low-dimensional Cox–Ingersoll–Ross process
,”
Stochastics
96
,
1530
(
2024
).
17.
Y.
Mishura
and
A.
Yurchenko-Tytarenko
, “
Standard and fractional reflected Ornstein–Uhlenbeck processes as the limits of square roots of Cox–Ingersoll–Ross processes
,”
Stochastics
95
,
99
117
(
2023
).
18.
K.
Oldham
,
J.
Myland
, and
J.
Spanier
,
An Atlas of Functions
, 2nd ed. (
Springer
,
New York
,
2009
).
19.
A.
Alfonsi
,
Affine Diffusions and Related Processes: Simulation, Theory and Applications
, Bocconi & Springer Series, Vol. 6 (
Springer
,
Cham
;
Bocconi University Press
,
Milan
,
2015
), pp. xiv+
252
.
20.
O.
Dehtiar
,
Y.
Mishura
, and
K.
Ralchenko
, “
Two methods of estimation of the drift parameters of the Cox–Ingersoll–Ross process: Continuous observations
,”
Comm. Statist. Theory Methods
51
,
6818
6833
(
2022
).
21.
O.
Okhrin
,
M.
Rockinger
, and
M.
Schmid
, “
Distributional properties of continuous time processes: From CIR to Bates
,”
AStA Adv. Stat. Anal.
107
,
397
419
(
2023
).
22.
M.
Ben Alaya
and
A.
Kebaier
, “
Asymptotic behavior of the maximum likelihood estimator for ergodic and nonergodic square-root diffusions
,”
Stoch. Anal. Appl.
31
,
552
573
(
2013
).
23.
Y.
Mishura
,
S.
Posashkova
, and
G.
Shevchenko
, “
Properties of solutions of stochastic differential equations with nonhomogeneous coefficients and non-Lipschitz diffusion
,”
Theor. Probability Math. Statist.
79
,
117
126
(
2009
).
24.
T.
Yamada
and
S.
Watanabe
, “
On the uniqueness of solutions of stochastic differential equations
,”
J. Math. Kyoto Univ.
11
(
1
),
155
167
(
1971
).
25.
Y.
Mishura
and
G.
Shevchenko
,
Theory and Statistical Applications of Stochastic Processes
(
ISTE Ltd
;
John Wiley & Sons
,
2017
).
26.
R. S.
Liptser
and
A. N.
Shiryayev
,
Theory of Martingales
, Mathematics and its Applications (Soviet Series), Vol.
49
(
Kluwer Academic Publishers Group
,
Dordrecht
,
1989
), pp. xiv+
792
.
27.
G.
Kulinich
,
S.
Kushnirenko
, and
Y.
Mishura
,
Asymptotic Analysis of Unstable Solutions of Stochastic Differential Equations
, Bocconi & Springer Series, Vol.
9
(
Bocconi University Press
;
Springer
,
2020
), p.
248
.
28.
A. G.
Cherstvy
,
A. V.
Chechkin
, and
R.
Metzler
, “
Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes
,”
New J. Phys.
15
,
083039
(
2013
).
29.
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
, edited by
M.
Abramowitz
and
I. A.
Stegun
(
Dover Publications, Inc
.,
New York
,
1992
).
You do not currently have access to this content.