Rainwater pipeline siltation significantly impacts the flow capacity of drainage infrastructure, increasing the risk of flood disasters. Existing studies does not consider the energy dissipation caused by the gap fluid effect and quantification of “particle–liquid–gas” coupling relationship. To address these gaps, particle–liquid–gas coupling governing equations and constraint conditions are constructed to improve the accuracy of fluid–structure coupling calculation in a silted pipeline. Then, combining semi-empirical formulas, energy dissipation theory, and elastic fluid dynamics, a contact force model with wet particle method, dry particle method, and damping coefficient is constructed to improve the simulation accuracy of particle and liquid motion. By analyzing Di Felice resistance, pressure gradient force, and virtual mass force, a high-resolution computational fluid dynamics and discrete element method coupling model of silted pipeline is constructed to formulate the response characteristics of siltation flow in rainwater pipelines. The results indicate that the error rate of the proposed simulation model is maintained within [5.83, 6.79] for siltation flow analysis, which is far better than other numerical simulation methods. The variation interval of correlation coefficients under different siltation scenarios is [0.87, 0.92], which indicates high reliability and robustness. For siltation degree of 0.2, the average flow velocity at the inlet, midpoint, and outlet sections is 27.66%, 8.42%, and 11.31% lower compared to the non-silted section, respectively. The theoretical structural formula of average flow velocity in the silted pipeline can be calculated by modified Manning formula and measured siltation parameters. These findings can provide guidance on higher precision flood numerical simulation and early warning in the future.

1.
Abdulsamad
,
A.
and
Abdulrazzaq
,
K. A.
, “
Applying the WaterGEMS software to conduct a comparison of the Darcy-Weisbach and Hazen-Williams equations for calculating the frictional head loss in a selected pipe network
,”
J. Eng.
29
(
2
),
153
163
(
2023
).
2.
Alihosseini
,
M.
and
Thamsen
,
P. U.
, “
Analysis of sediment transport in sewer pipes using a coupled CFD-DEM model and experimental work
,”
Urban Water J.
16
(
4
),
259
268
(
2019
).
3.
Aljurbua
,
A.
and
Sarabandi
,
K.
, “
Detection and localization of pipeline leaks using 3-D bistatic subsurface imaging radars
,”
IEEE Trans. Geosci. Remote Sens.
60
,
5220211
(
2022
).
4.
Alqahtani
,
F.
,
Banks
,
J.
,
Chandran
,
V.
, and
Zhang
,
J.
, “
3D face tracking using stereo cameras: A review
,”
IEEE Access
8
,
94373
94393
(
2020
).
5.
Bagherifar
,
M.
,
Emdadi
,
A.
,
Azimi
,
H.
,
Sanahmadi
,
B.
, and
Shabanlou
,
S.
, “
Numerical evaluation of turbulent flow in a circular conduit along a side weir
,”
Appl. Water Sci.
10
(
1
),
35
(
2020
).
6.
Caltagirone
,
J.
,
Vincent
,
S.
, and
Caruyer
,
C.
, “
A multiphase compressible model for the simulation of multiphase flows
,”
Comput. Fluids
50
(
1
),
24
34
(
2011
).
7.
Capasso
,
S.
,
Tagliafierro
,
B.
,
Martínez
,
I.
,
Domínguez
,
J. M.
,
Crespo
,
A. J. C.
, and
Viccione
,
G.
, “
A DEM approach for simulating flexible beam elements with the Project Chrono core module in DualSPHysics
,”
Comput. Part. Mech.
9
(
5
),
969
985
(
2022
).
8.
Chowdhury
,
W.
and
Yan
,
Y.
, “
Applications of artificial intelligence to instrumentation systems for monitoring complex industrial processes
,”
Cybernet. Intell.
3
,
1
18
(
2024
).
9.
Di
,
D.
,
Li
,
T.
,
Fang
,
H.
,
Zhang
,
J.
,
Wang
,
N.
, and
Li
,
B.
, “
A CFD-DEM investigation into hydraulic transport and retardation response characteristics of drainage pipeline siltation using intelligent model
,”
Tunnelling Underground Space Technol.
152
,
105964
(
2024
).
10.
do Nascimento Wrasse
,
A.
,
Nunes dos Santos
,
E.
,
Jose da Silva
,
M.
,
Wu
,
H.
, and
Tan
,
C.
, “
Capacitive sensors for multiphase flow measurement: A review
,”
IEEE Sens. J.
22
(
22
),
21391
21409
(
2022
).
11.
Ershkov
,
S. V.
,
Prosviryakov
,
E. Y.
,
Burmasheva
,
N. V.
, and
Christianto
,
V.
, “
Towards understanding the algorithms for solving the Navier–Stokes equations
,”
Fluid Dyn. Res.
53
(
4
),
044501
(
2021
).
12.
Fang
,
H.
,
Zhang
,
Z.
,
Di
,
D.
,
Zhang
,
J.
,
Sun
,
B.
,
Wang
,
N.
, and
Li
,
B.
, “
Integrating fluid–solid coupling domain knowledge with deep learning models: An automatic and interpretable diagnostic system for the silting disease of drainage pipelines
,”
Tunnelling Underground Space Technol.
142
,
105386
(
2023
).
13.
Gollwitzer
,
F.
,
Rehberg
,
I.
,
Kruelle
,
C. A.
, and
Huang
,
K.
, “
Coefficient of restitution for wet particles
,”
Phys. Rev. E
86
(
1
),
011303
(
2012
).
14.
He
,
L.
,
Liu
,
Z.
, and
Zhao
,
Y.
, “
An extended unresolved CFD-DEM coupling method for simulation of fluid and non-spherical particles
,”
Particuology
68
,
1
12
(
2022
).
15.
Hindasi
,
H. A.
and
Abushandi
,
E.
, “
Quantifying flow and velocity distributions in open channels with varied roughness and slopes: A modelling approach
,”
Water Sci.
37
(
1
),
269
275
(
2023
).
16.
Huang
,
D.
,
Su
,
Y.
,
Wang
,
Q.
,
Gu
,
Z.
,
Cheng
,
J.
, and
Wei
,
Z.
, “
Wind load characterization considering three container cranes in array arrangement
,”
IEEE Access
12
,
89222
89233
(
2024
).
17.
Joseph
,
G. G.
and
Hunt
,
M. L.
, “
Oblique particle–wall collisions in a liquid
,”
J. Fluid Mech.
510
,
71
93
(
2004
).
18.
Joseph
,
G.
,
Zenit
,
R.
,
Hunt
,
M. L.
, and
Rosenwinkel
,
A. M.
, “
Particle–wall collisions in a viscous fluid
,”
J. Fluid Mech.
433
,
329
346
(
2001
).
19.
Kakavandi
,
H.
,
Heidari
,
M.
, and
Ghobadian
,
R.
, “
A numerical model for calculating velocity distribution in cross-section of an open channel
,”
Appl. Water Sci.
14
(
3
),
37
(
2024
).
20.
Khoshkonesh
,
A.
,
Nsom
,
B.
,
Bahmanpouri
,
F.
,
Dehrashid
,
F. A.
, and
Adeli
,
A.
, “
Numerical study of the dynamics and structure of a partial dam-break flow using the VOF method
,”
Water Resour. Manage.
35
,
1513
1528
(
2021
).
21.
Kossenas
,
K.
,
Podilchak
,
S. K.
, and
Beveridge
,
M.
, “
A microwave liquid level determination method for oil and gas pipelines
,”
IEEE Access
10
,
67031
67046
(
2022
).
22.
Kratt
,
C. B.
,
Woo
,
D. K.
,
Johnson
,
K. N.
,
Haagsma
,
M.
,
Kumar
,
P.
,
Selker
,
J.
, and
Tyler
,
S.
, “
Field trials to detect drainage pipe networks using thermal and RGB data from unmanned aircraft
,”
Agric. Water Manage.
229
,
105895
(
2020
).
23.
Li
,
Z.
,
Chen
,
H.
,
Wu
,
Y.
,
Xu
,
Z.
,
Shi
,
H.
, and
Zhang
,
P.
, “
CFD-DEM analysis of hydraulic conveying of non-spherical particles through a vertical-bend-horizontal pipeline
,”
Powder Technol.
434
,
119361
(
2024
).
24.
Liu
,
X.
,
Morita
,
K.
, and
Zhang
,
S.
, “
Direct numerical simulation of incompressible multiphase flow with vaporization using moving particle semi-implicit method
,”
J. Comput. Phys.
425
,
109911
(
2021
).
25.
Ma
,
H.
,
Li
,
B.
, and
Zhang
,
S.
, “
Scour mechanism around a pipeline under different current-wave conditions using the CFD-DEM coupling model
,”
Comput. Geotech.
170
,
106304
(
2024
).
26.
Meier
,
C.
,
Fuchs
,
S. L.
,
Hart
,
A. J.
, and
Wall
,
W. A.
, “
A novel smoothed particle hydrodynamics formulation for thermo-capillary phase change problems with focus on metal additive manufacturing melt pool modeling
,”
Comput. Methods Appl. Mech. Eng.
381
,
113812
(
2021
).
27.
Minár
,
J.
,
Evans
,
I. S.
, and
Jenčo
,
M.
, “
A comprehensive system of definitions of land surface (topographic) curvatures, with implications for their application in geoscience modelling and prediction
,”
Earth-Sci. Rev.
211
,
103414
(
2020
).
28.
Mulbah
,
C.
,
Kang
,
C.
,
Mao
,
N.
,
Zhang
,
W.
,
Shaikh
,
A. R.
, and
Teng
,
S.
, “
A review of VOF methods for simulating bubble dynamics
,”
Prog. Nucl. Energy
154
,
104478
(
2022
).
29.
Nie
,
Y. P.
,
Wang
,
X. K.
, and
Yan
,
X. F.
, “
CFD-DEM-based evaluation of main-channel sediment transport processes subject to supplement from a steep tributary
,”
Eng. Geol.
333
,
107498
(
2024
).
30.
Rahimi
,
M.
,
Vollmann
,
S.
, and
Jin
,
S.
, “
Flow-induced erosion modelling of cohesive material with coupled CFD-DEM approach
,”
Miner. Eng.
217
,
108947
(
2024
).
31.
Su
,
H.
,
Kwok
,
K. W.
,
Cleary
,
K.
,
Iordachita
,
I.
,
Cavusoglu
,
M. C.
,
Desai
,
J. P.
, and
Fischer
,
G. S.
, “
State of the art and future opportunities in MRI-guided robot-assisted surgery and interventions
,”
Proc. IEEE
110
(
7
),
968
992
(
2022
).
32.
Tran
,
M. K.
,
Mathew
,
M.
,
Janhunen
,
S.
,
Panchal
,
S.
,
Raahemifar
,
K.
,
Fraser
,
R.
, and
Fowler
,
M.
, “
A comprehensive equivalent circuit model for lithium-ion batteries, incorporating the effects of state of health, state of charge, and temperature on model parameters
,”
J. Energy Storage
43
,
103252
(
2021
).
33.
Tung
,
C. T.
,
Dasgupta
,
A.
,
Agarwal
,
H.
,
Salahuddin
,
S.
, and
Hu
,
C.
, “
A compact model of perpendicular spin-transfer-torque magnetic tunnel junction
,”
IEEE Trans. Electron Devices
71
,
57
61
(
2024
).
34.
Wang
,
K.
,
Chang
,
Z.
,
Li
,
Y.
,
Qin
,
M.
,
Fu
,
G.
, and
Wang
,
G.
, “
Triaxial vibration response performance characteristics of solid particles in elbows under slurry flow conditions
,”
IEEE Trans. Instrum. Meas.
72
,
57
61
(
2023
).
35.
Wang
,
Y.
,
Ni
,
G.
, and
Liu
,
Y.
, “
Multistep Newton–Picard method for nonlinear differential equations
,”
J. Guid. Control Dyn.
43
(
11
),
2148
2155
(
2020
).
36.
Wang
,
Z.
,
Teng
,
Y.
, and
Liu
,
M.
, “
A semi-resolved CFD–DEM approach for particulate flows with kernel based approximation and Hilbert curve based searching strategy
,”
J. Comput. Phys.
384
,
151
169
(
2019
).
37.
Weber
,
G. H.
,
Nunes dos Santos
,
E.
,
Fernandes Gomes
,
D.
,
Santana
,
A. L. B.
,
da Silva
,
J. C. C.
,
Martelli
,
C.
et al, “
Measurement of gas-phase velocities in two-phase flow using distributed acoustic sensing
,”
IEEE Sens. J.
23
(
4
),
3597
3608
(
2023
).
38.
Xiong
,
J.
,
Zhu
,
J.
,
He
,
Y.
,
Ren
,
S.
,
Huang
,
W.
, and
Lu
,
F.
, “
The application of life cycle assessment for the optimization of pipe materials of building water supply and drainage system
,”
Sustainable Cities Soc.
60
,
102267
(
2020
).
39.
Yan
,
L.
,
Wang
,
L.
,
Wang
,
Z.
,
Geng
,
C.
,
He
,
B.
, and
Fang
,
B.
, “
Research on a new drag force model for cylindrical particles in fixed bed reactors
,”
Catalysts
12
(
10
),
1120
(
2022
).
40.
Yuan
,
X.
,
Shi
,
B.
,
Zhan
,
C.
, and
Chai
,
Z.
, “
A phase-field-based lattice Boltzmann model for multiphase flows involving N immiscible incompressible fluids
,”
Phys. Fluids
34
(
2
),
023311
(
2022
).
41.
Zhang
,
Y.
,
Wu
,
Z.
,
Ding
,
K.
,
Tan
,
S.
,
Wang
,
G.
,
Peng
,
Z
et al, “
Study on capture efficiency of particle trap and performance improvement method for DC GIL/GIS
,”
IEEE Trans. Dielectr. Electr. Insul.
30
(
5
),
2258
2266
(
2023
).
42.
Zhang
,
G.
,
Wang
,
L.
,
Yan
,
W.
, and
Zhang
,
X.
, “
Simulation study of motion characteristics of fiber impurity particles under oil flow and dielectric barrier
,”
IEEE Trans. Dielectr. Electr. Insul.
31
,
1953
1962
(
2024
).
43.
Zhou
,
C.
and
Yin
,
Y.
, “
Pipe assembly planning algorithm by imitating human imaginal thinking
,”
Assem. Autom.
30
(
1
),
66
74
(
2010
).
You do not currently have access to this content.