Relativistic electrons (>1 MeV) saturating Earth's outer radiation belt is widely regarded as a vital risk to human astronomical activities. In the present work, we construct an artificial neural network model to predict the relativistic electron phase space density (PSD) at μ = 1000 MeV/G (the first adiabatic invariant) with K = 0.08 G1/2RE and K = 0.17 G1/2RE (the second adiabatic invariant) at L* (the third adiabatic invariant) ranging from 2.0 to 5.5, based on Van Allen Probe-A observations from 2012 to 2019. The historical values of the solar wind, geomagnetic indices, and the last orbital observations of the electron PSD are all adopted as inputs. Within the core region of relativistic electrons (L* = 3.0–5.5), the model achieves good performance, with overall root mean square errors of 0.1328 and 0.1342, prediction efficiencies of 0.9918 and 0.9916, and Pearson correlation coefficients of 0.9959 and 0.9958 for K = 0.08 G1/2RE and K = 0.17 G1/2RE, respectively. Statistical analysis revealed that 99.9% of the samples present an observation-prediction difference of less than one order of magnitude, 99% present a difference of less than 0.5 order, and 90% present a difference of less than 0.2 order. Furthermore, predictions can accurately reproduce the temporal evolution of the electron PSD during both quiet times and active conditions with no noticeable errors. The current model will aid in further analyzing the competition between the sources and losses of radiation belt particles and contribute to developing a future space weather catastrophe warning system.

1.
X.
Li
,
D. N.
Baker
,
S. G.
Kanekal
,
M.
Looper
, and
M.
Temerin
, “
Long term measurements of radiation belts by SAMPEX and their variations
,”
Geophys. Res. Lett.
28
(
20
),
3827
3830
, https://doi.org/10.1029/2001GL013586 (
2001
).
2.
G. D.
Reeves
,
K. L.
McAdams
,
R. H. W.
Friedel
, and
T. P.
O'Brien
, “
Acceleration and loss of relativistic electrons during geomagnetic storms
,”
Geophys. Res. Lett.
30
(
10
),
1529
, https://doi.org/10.1029/2002GL016513 (
2003
).
3.
D. N.
Baker
,
S. G.
Kanekal
,
V. C.
Hoxie
,
M. G.
Henderson
,
X.
Li
,
H. E.
Spence
,
S. R.
Elkington
,
R. H.
Friedel
,
J.
Goldstein
,
M. K.
Hudson
,
G. D.
Reeves
,
R. M.
Thorne
,
C. A.
Kletzing
, and
S. G.
Claudepierre
, “
A long-lived relativistic electron storage ring embedded in Earth's outer Van Allen belt
,”
Science
340
(
6129
),
186
190
(
2013
).
4.
R. M.
Thorne
,
B.
Ni
,
X.
Tao
,
R. B.
Horne
, and
N. P.
Meredith
, “
Scattering by chorus waves as the dominant cause of diffuse auroral precipitation
,”
Nature
467
(
7318
),
943
946
(
2010
).
5.
B.
Ni
,
Z.
Zou
,
X.
Gu
,
C.
Zhou
,
R. M.
Thorne
,
J.
Bortnik
,
R.
Shi
,
Z.
Zhao
,
D. N.
Baker
,
S. G.
Kanekal
,
H. E.
Spence
,
G. D.
Reeves
, and
X.
Li
, “
Variability of the pitch angle distribution of radiation belt ultrarelativistic electrons during and following intense geomagnetic storms: Van Allen Probes observations
,”
JGR. Space Phys.
120
(
6
),
4863
4876
(
2015
).
6.
Z.
Su
,
H.
Zhu
,
F.
Xiao
,
Q. G.
Zong
,
X. Z.
Zhou
,
H.
Zheng
,
Y.
Wang
,
S.
Wang
,
Y. X.
Hao
,
Z.
Gao
,
Z.
He
,
D. N.
Baker
,
H. E.
Spence
,
G. D.
Reeves
,
J. B.
Blake
, and
J. R.
Wygant
, “
Ultralow-frequency wave-driven diffusion of radiation belt relativistic electrons
,”
Nat. Commun.
6
,
10096
(
2015
).
7.
Q. G.
Zong
,
Y. F.
Wang
,
H.
Zhang
,
S. Y.
Fu
,
H.
Zhang
,
C. R.
Wang
,
C. J.
Yuan
, and
I.
Vogiatzis
, “
Fast acceleration of inner magnetospheric hydrogen and oxygen ions by shock induced ULF waves
,”
J. Geophys. Res.
117
(
A11
),
A11206
, https://doi.org/10.1029/2012JA018024 (
2012
).
8.
Z.
Zou
,
P.
Zuo
,
B.
Ni
,
Z.
Gao
,
G.
Wang
,
Z.
Zhao
,
X.
Feng
, and
F.
Wei
, “
Two-step dropouts of radiation belt electron phase space density induced by a magnetic cloud event
,”
ApJL.
895
(
1
),
L24
(
2020
).
9.
Z.
Zou
,
P.
Zuo
,
B.
Ni
,
J.
Wei
,
W.
Zhou
,
H.
Huang
, and
Y.
Xie
, “
Competition between the source and loss processes of radiation belt source, seed, and relativistic electrons induced by a magnetic cloud event
,”
Phys. Fluids
36
(
2
),
026603
(
2024
).
10.
J. E.
Borovsky
,
D. T.
Welling
,
M. F.
Thomsen
, and
M. H.
Denton
, “
Long-lived plasmaspheric drainage plumes: Where does the plasma come from?
,”
JGR. Space Phys.
119
(
8
),
6496
6520
(
2014
).
11.
B.
Ni
,
J.
Liang
,
R. M.
Thorne
,
V.
Angelopoulos
,
R. B.
Horne
,
M.
Kubyshkina
,
E.
Spanswick
,
E. F.
Donovan
, and
D.
Lummerzheim
, “
Efficient diffuse auroral electron scattering by electrostatic electron cyclotron harmonic waves in the outer magnetosphere: A detailed case study
,”
J. Geophys. Res.
117
(
A1
),
1218
, https://doi.org/10.1029/2011JA017095 (
2012
).
12.
Z.
Zou
,
H.
Huang
,
J.
Hu
,
W.
San
, and
Q.
Yuan
, “
Prompt extinction of bump-on-tail energy spectra for radiation belt electron phase space density
,”
Phys. Fluids
36
(
5
),
056608
(
2024
).
13.
J.
Hu
,
Z.
Zou
,
H.
Huang
,
W.
San
,
Q.
Yuan
, and
B.
Zhu
, “
Global features of energetic proton pancake pitch angle distributions in the Earth's radiation belt
,”
Phys. Fluids
36
(
9
),
096607
(
2024
).
14.
D. L.
Turner
,
Y.
Shprits
,
M.
Hartinger
, and
V.
Angelopoulos
, “
Explaining sudden losses of outer radiation belt electrons during geomagnetic storms
,”
Nat. Phys.
8
(
3
),
208
212
(
2012
).
15.
F.
Xiao
,
C.
Yang
,
Z.
Su
,
Q.
Zhou
,
Z.
He
,
Y.
He
,
D. N.
Baker
,
H. E.
Spence
,
H. O.
Funsten
, and
J. B.
Blake
, “
Wave-driven butterfly distribution of Van Allen belt relativistic electrons
,”
Nat. Commun.
6
,
1
9
(
2015
).
16.
Y. Y.
Shprits
,
A. Y.
Drozdov
,
M.
Spasojevic
,
A. C.
Kellerman
,
M. E.
Usanova
,
M. J.
Engebretson
,
O. V.
Agapitov
,
I. S.
Zhelavskaya
,
T. J.
Raita
,
H. E.
Spence
,
D. N.
Baker
,
H.
Zhu
, and
N. A.
Aseev
, “
Wave-induced loss of ultrarelativistic electrons in the Van Allen radiation belts
,”
Nat. Commun.
7
,
12883
(
2016
).
17.
Y. Y.
Shprits
,
D.
Subbotin
,
A.
Drozdov
,
M. E.
Usanova
,
A.
Kellerman
,
K.
Orlova
,
D. N.
Baker
,
D. L.
Turner
, and
K. C.
Kim
, “
Unusual stable trapping of the ultrarelativistic electrons in the Van Allen radiation belts
,”
Nat. Phys.
9
(
11
),
699
703
(
2013
).
18.
B.
Ni
,
Y.
Shprits
,
T.
Nagai
,
R.
Thorne
,
Y.
Chen
,
D.
Kondrashov
, and
H.
Kim
, “
Reanalyses of the radiation belt electron phase space density using nearly equatorial CRRES and polar-orbiting Akebono satellite observations
,”
J. Geophys. Res.
114
(
A5
),
A05208
, https://doi.org/10.1029/2008JA013933 (
2009
).
19.
J.
Bortnik
and
R. M.
Thorne
, “
Transit time scattering of energetic electrons due to equatorially confined magnetosonic waves
,”
J. Geophys. Res.
115
(
A7
),
A05208
, https://doi.org/10.1029/2010JA015283 (
2010
).
20.
B.
Ni
,
R.
Thorne
,
J.
Liang
,
V.
Angelopoulos
,
C.
Cully
,
W.
Li
,
X.
Zhang
,
M.
Hartinger
,
O.
Le Contel
, and
A.
Roux
, “
Global distribution of electrostatic electron cyclotron harmonic waves observed on THEMIS
,”
Geophys. Res. Lett.
38
(
17
),
L17105
, https://doi.org/10.1029/2011GL048793 (
2011
).
21.
D. L.
Turner
,
E. K. J.
Kilpua
,
H.
Hietala
,
S. G.
Claudepierre
,
T. P.
O'Brien
,
J. F.
Fennell
,
J. B.
Blake
,
A. N.
Jaynes
,
S.
Kanekal
,
D. N.
Baker
,
H. E.
Spence
,
J.-F.
Ripoll
, and
G. D.
Reeves
, “
The response of earth's electron radiation belts to geomagnetic storms: Statistics from the Van Allen Probes era including effects from different storm drivers
,”
JGR. Space Phys.
124
(
2
),
1013
1034
(
2019
).
22.
Q.
Zong
,
Y.
Hao
, and
Y.
Wang
, “
Ultra low frequency waves impact on radiation belt energetic particles
,”
Sci. China Ser. E-Technol. Sci.
52
,
3698
3708
(
2009
).
23.
J.
Bortnik
and
R. M.
Thorne
, “
The dual role of ELF/VLF chorus waves in the acceleration and precipitation of radiation belt electrons
,”
J. Atmos. Sol.-Terr. Phys.
69
(
3
),
378
386
(
2007
).
24.
X.
Cao
,
B.
Ni
,
D.
Summers
,
Z.
Zou
,
S.
Fu
, and
W.
Zhang
, “
Bounce resonance scattering of radiation belt electrons by low‐frequency hiss: Comparison with cyclotron and Landau resonances
,”
Geophys. Res. Lett.
44
(
19
),
9547
9554
, https://doi.org/10.1002/2017GL075104 (
2017
).
25.
J.
Li
,
J.
Bortnik
,
W.
Li
,
X.
An
,
L. R.
Lyons
,
W. S.
Kurth
,
G. B.
Hospodarsky
,
D. P.
Hartley
,
G. D.
Reeves
,
H. O.
Funsten
,
J. B.
Blake
,
H.
Spence
, and
D. N.
Baker
, “
Unraveling the formation region and frequency of chorus spectral gaps
,”
Geophys. Res. Lett.
49
(
19
),
e2022GL100385
, https://doi.org/10.1029/2022GL100385 (
2022
).
26.
X.
Cao
,
B.
Ni
,
D.
Summers
,
Y. Y.
Shprits
,
X.
Gu
,
S.
Fu
,
Y.
Lou
,
Y.
Zhang
,
X.
Ma
,
W.
Zhang
,
H.
Huang
, and
J.
Yi
, “
Sensitivity of EMIC wave-driven scattering loss of ring current protons to wave normal angle distribution
,”
Geophys. Res. Lett.
46
(
2
),
590
598
, https://doi.org/10.1029/2018GL081550 (
2019
).
27.
D.
Summers
, “
Quasilinear diffusion coefficients for field-aligned electromagnetic waves with applications to the magnetosphere
,”
J. Geophys. Res.
110
(
A8
),
A08213
, https://doi.org/10.1029/2005JA011159 (
2005
).
28.
J. M.
Albert
, “
Refractive index and wavenumber properties for cyclotron resonant quasilinear diffusion by cold plasma waves
,”
Phys. Plasmas
14
(
7
),
072901
(
2007
).
29.
M.
Hua
,
W.
Li
,
B.
Ni
,
Q.
Ma
,
A.
Green
,
X.
Shen
,
S. G.
Claudepierre
,
J.
Bortnik
,
X.
Gu
,
S.
Fu
,
Z.
Xiang
, and
G. D.
Reeves
, “
Very-Low-Frequency transmitters bifurcate energetic electron belt in near-earth space
,”
Nat. Commun.
11
(
1
),
4847
(
2020
).
30.
Z. L.
Gao
,
X. J.
Shang
,
P. B.
Zuo
,
Z. Y.
Zou
,
G.
Wang
,
X. S.
Feng
,
Y.
Wang
,
C. Y.
Guan
, and
F. S.
Wei
, “
Lag-correlated rising tones of electron cyclotron harmonic and whistler-mode upper-band chorus waves
,”
Phys. Plasmas
27
(
6
),
062903
(
2020
).
31.
Z.
Zou
,
P.
Zuo
,
B.
Ni
,
F.
Wei
,
Z.
Zhao
,
X.
Cao
,
S.
Fu
, and
X.
Gu
, “
Wave normal angle distribution of fast magnetosonic waves: A survey of Van Allen Probes EMFISIS observations
,”
JGR. Space Phys.
124
(
7
),
5663
5674
(
2019
).
32.
J.
Bortnik
,
W.
Li
,
R. M.
Thorne
, and
V.
Angelopoulos
, “
A unified approach to inner magnetospheric state prediction
,”
JGR. Space Phys.
121
(
3
),
2423
2430
(
2016
).
33.
X.
Chu
,
D.
Ma
,
J.
Bortnik
,
W. K.
Tobiska
,
A.
Cruz
,
S. D.
Bouwer
,
H.
Zhao
,
Q.
Ma
,
K.
Zhang
,
D. N.
Baker
,
X.
Li
,
H.
Spence
, and
G.
Reeves
, “
Relativistic electron model in the outer radiation belt using a neural network approach
,”
SPACE Weather. Int. J. Res. Appl.
19
(
12
),
e2021SW002808
(
2021
).
34.
Y.
Chen
,
G. D.
Reeves
,
X.
Fu
, and
M.
Henderson
, “
PreMevE: New predictive model for megaelectron-volt electrons inside earth's outer radiation belt
,”
Space Weather
17
(
3
),
438
454
, https://doi.org/10.1029/2018SW002095 (
2019
).
35.
R.
Pires de Lima
,
Y.
Chen
, and
Y.
Lin
, “
Forecasting megaelectron-volt electrons inside earth's outer radiation belt: PreMevE 2.0 based on supervised machine learning algorithms
,”
Space Weather
18
,
1
23
, https://doi.org/10.1029/2019SW002399 (
2020
).
36.
S. G.
Claudepierre
and
T. P.
O'Brien
, “
Specifying high-altitude electrons using low-altitude LEO systems: The SHELLS model
,”
Space Weather
18
(
3
),
e2019SW002402
, https://doi.org/10.1029/2019SW002402 (
2020
).
37.
J. B.
Blake
,
P. A.
Carranza
,
S. G.
Claudepierre
et al, “
The magnetic electron ion spectrometer (MagEIS) instruments aboard the radiation belt storm probes (RBSP) spacecraft
,”
Space Sci. Rev.
179
,
383
421
(
2013
).
38.
D. N.
Baker
,
S. G.
Kanekal
,
V. C.
Hoxie
et al, “
The relativistic electron-proton telescope (REPT) instrument on board the radiation belt storm probes (RBSP) spacecraft: Characterization of earth's radiation belt high-energy particle populations
,”
Space Sci. Rev.
179
(
1–4
),
337
381
(
2013
).
39.
N. A.
Tsyganenko
and
M. I.
Sitnov
, “
Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms
,”
J. Geophys. Res.
110
,
A03208
, https://doi.org/10.1029/2004JA010798 (
2005
).
40.
Y.
Chen
,
R. H. W.
Friedel
,
G. D.
Reeves
,
T. G.
Onsager
, and
M. F.
Thomsen
, “
Multisatellite determination of the relativistic electron phase space density at geosynchronous orbit: Methodology and results during geomagnetically quiet times
,”
J. Geophys. Res.
110
,
A10210
, https://doi.org/10.1029/2004JA010895 (
2005
).
41.
G. D.
Reeves
,
H. E.
Spence
,
M. G.
Henderson
,
S. K.
Morley
,
R. H.
Friedel
,
H. O.
Funsten
,
D. N.
Baker
,
S. G.
Kanekal
,
J. B.
Blake
,
J. F.
Fennell
,
S. G.
Claudepierre
,
R. M.
Thorne
,
D. L.
Turner
,
C. A.
Kletzing
,
W. S.
Kurth
,
B. A.
Larsen
, and
J. T.
Niehof
, “
Electron acceleration in the heart of the Van Allen radiation belts
,”
Science
341
(
6149
),
991
994
(
2013
).
42.
Z. Y.
Zou
,
Y. Y.
Shprits
,
B. B.
Ni
,
N. A.
Aseev
,
P. B.
Zuo
, and
F. S.
Wei
, “
An artificial neural network model of electron fluxes in the Earth's central plasma sheet: A THEMIS survey
,”
Astrophys. Space Sci.
365
(
6
),
100
(
2020
).
43.
Z.
Zou
,
H.
Huang
,
P.
Zuo
,
B.
Ni
,
W.
San
,
Q.
Yuan
,
J.
Hu
, and
J.
Wei
, “
A forecast model of geomagnetic indices from the solar wind fluids observations based on long short-term memory neural network
,”
Phys. Fluids
36
(
2
),
026616
(
2024
).
You do not currently have access to this content.