The rapid global development of urbanization has led to increased building densities. Wind-energy-harnessing dense building array in urban areas is a contemporary initiative to increase the share of affordable and clean energy in global energy production. This study comprehensively investigates the accuracy of computational fluid dynamics simulations for predicting mean and turbulent wind characteristics over a typical 3 × 3 building array placed in close proximity. The three-dimensional steady Reynolds-averaged Navier–Stokes and Reynolds stress model models provide the most accurate wind velocity, turbulence intensity, and wind power density predictions for a typical building array. We evaluate various impact parameters of urban building arrays, including (1) plan area density, (2) unequal building height arrangements with and without balconies, (3) balcony depth, and (4) balcony density. Based on our results, we recommend a plan area density (λp) of 0.4 as the mounting site of wind turbines due to its excellent average power density and unacceptable turbulence region. The arrangement of buildings, the presence of balconies, and balcony design significantly modify urban wind patterns. The depth of balconies from 2.5 to 10 mm will increase average wind power density by 25% at wind directions of 0°, and the difference is minimal at wind direction of 45°. Lower balcony densities are more suitable for installing wind turbines on rooftops. Furthermore, the results provide design guidelines for compact building arrays with balconies for urban planning and wind energy exploitation.

1.
H.
Ritchie
,
M.
Roser
, and
P.
Rosado
, “
Energy production and changing energy sources, Our world in data
,” (
2014
), https://ourworldindata.org/energy.
2.
A. M.
Update
,
Global Wind Report
(
Global Wind Energy Council
,
2017
).
3.
S.
Li
,
Q.
Chen
,
Y.
Li
,
S.
Pröbsting
,
C.
Yang
,
X.
Zheng
,
Y.
Yang
,
W.
Zhu
,
W.
Shen
,
F.
Wu
,
D.
Li
,
T.
Wang
, and
S.
Ke
, “
Experimental investigation on noise characteristics of small scale vertical axis wind turbines in urban environments
,”
Renewable Energy
200
,
970
982
(
2022
).
4.
P.
Veers
,
K.
Dykes
,
S.
Basu
,
A.
Bianchini
,
A.
Clifton
,
P.
Green
,
H.
Holttinen
,
L.
Kitzing
,
B.
Kosovic
,
J. K.
Lundquist
,
J.
Meyers
,
M.
O'Malley
,
W. J.
Shaw
, and
B.
Straw
, “
Grand challenges: Wind energy research needs for a global energy transition
,”
Wind Energy Sci.
7
(
6
),
2491
2496
(
2022
).
5.
F.
Balduzzi
,
A.
Bianchini
,
E. A.
Carnevale
,
L.
Ferrari
, and
S.
Magnani
, “
Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building
,”
Appl. Energy
97
,
921
929
(
2012
).
6.
P.
Larin
,
M.
Paraschivoiu
, and
C.
Aygun
, “
CFD based synergistic analysis of wind turbines for roof mounted integration
,”
J. Wind Eng. Ind. Aerodyn.
156
,
1
13
(
2016
).
7.
M. A.
Heath
,
J. D.
Walshe
, and
S. J.
Watson
, “
Estimating the potential yield of small building-mounted wind turbines
,”
Wind Energy
10
(
3
),
271
287
(
2007
).
8.
Y. G.
Heo
,
N. J.
Choi
,
K. H.
Choi
,
H. S.
Ji
, and
K. C.
Kim
, “
CFD study on aerodynamic power output of a 110kW building augmented wind turbine
,”
Energy Build.
129
,
162
173
(
2016
).
9.
R. K.
Reja
,
R.
Amin
,
Z.
Tasneem
,
M. F.
Ali
,
M. R.
Islam
,
D. K.
Saha
,
F. R.
Badal
,
M. H.
Ahamed
,
S. I.
Moyeen
, and
S. K.
Das
, “
A review of the evaluation of urban wind resources: Challenges and perspectives
,”
Energy Build.
257
,
111781
(
2022
).
10.
Y. H.
Juan
,
C. Y.
Wen
,
Z.-T.
Li
, and
A. S.
Yang
, “
Impacts of urban morphology on improving urban wind energy potential for generic high-rise building arrays
,”
Appl. Energy
299
,
117304
(
2021
).
11.
I.
Abohela
,
N.
Hamza
, and
S.
Dudek
, “
Effect of roof shape, wind direction, building height and urban configuration on the energy yield and positioning of roof mounted wind turbines
,”
Renewable Energy
50
,
1106
1118
(
2013
).
12.
F.
Yang
,
F.
Qian
, and
S. S. Y.
Lau
, “
Urban form and density as indicators for summertime outdoor ventilation potential: A case study on high-rise housing in Shanghai
,”
Build. Environ.
70
,
122
137
(
2013
).
13.
R.
Ramponi
,
B.
Blocken
,
L. B.
de Coo
, and
W. D.
Janssen
, “
CFD simulation of outdoor ventilation of generic urban configurations with different urban densities and equal and unequal street widths
,”
Build. Environ.
92
,
152
166
(
2015
).
14.
L.
Chen
,
J.
Hang
,
M.
Sandberg
,
L.
Claesson
,
S.
Di Sabatino
, and
H.
Wigo
, “
The impacts of building height variations and building packing densities on flow adjustment and city breathability in idealized urban models
,”
Build. Environ.
118
,
344
361
(
2017
).
15.
Y.
Du
and
C. M.
Mak
, “
Improving pedestrian level low wind velocity environment in high-density cities: A general framework and case study
,”
Sustain. Cities Soc.
42
,
314
324
(
2018
).
16.
D.
Cui
,
G.
Hu
,
Z.
Ai
,
Y.
Du
,
C. M.
Mak
, and
K.
Kwok
, “
Particle image velocimetry measurement and CFD simulation of pedestrian level wind environment around U-type street canyon
,”
Build. Environ.
154
,
239
251
(
2019
).
17.
L.
Chen
,
C. M.
Mak
,
J.
Hang
,
Y.
Dai
,
J.
Niu
, and
K. T.
Tse
, “
Large eddy simulation study on pedestrian-level wind environments around elevated walkways and influential factors in ideal urban street canyons
,”
Build. Environ.
235
,
110236
(
2023
).
18.
A.
Garmory
,
I. S.
Kim
,
R. E.
Britter
, and
E.
Mastorakos
, “
Simulations of the dispersion of reactive pollutants in a street canyon, considering different chemical mechanisms and micromixing
,”
Atmos. Environ.
43
(
31
),
4670
4680
(
2009
).
19.
J.
Hang
,
Q.
Wang
,
X.
Chen
,
M.
Sandberg
,
W.
Zhu
,
R.
Buccolieri
, and
S.
Di Sabatino
, “
City breathability in medium density urban-like geometries evaluated through the pollutant transport rate and the net escape velocity
,”
Build. Environ.
94
,
166
182
(
2015
).
20.
Y.
Dai
,
C. M.
Mak
,
Z.
Ai
, and
J.
Hang
, “
Evaluation of computational and physical parameters influencing CFD simulations of pollutant dispersion in building arrays
,”
Build. Environ.
137
,
90
107
(
2018
).
21.
H.
Montazeri
and
B.
Blocken
, “
CFD simulation of wind-induced pressure coefficients on buildings with and without balconies: Validation and sensitivity analysis
,”
Build. Environ.
60
,
137
149
(
2013
).
22.
Y.
Quan
,
F.
Hou
, and
M.
Gu
, “
Effects of vertical ribs protruding from facades on the wind loads of super high-rise buildings
,”
Wind Struct.
24
(
2
),
145
169
(
2017
).
23.
J.
Liu
,
Y.
Hui
,
Q.
Yang
, and
G.
Wang
, “
Numerical study of impact of façade ribs on the wind field and wind force of high-rise building under atmospheric boundary layer flow
,”
J. Wind Eng. Ind. Aerodyn.
236
,
105399
(
2023
).
24.
U. B.
Gunturu
and
C. A.
Schlosser
, “
Characterization of wind power resource in the United States
,”
Atmos. Chem. Phys.
12
(
20
),
9687
9702
(
2012
).
25.
B.
Wang
,
L. D.
Cot
,
L.
Adolphe
,
S.
Geoffroy
, and
S.
Sun
, “
Cross indicator analysis between wind energy potential and urban morphology
,”
Renewable Energy
113
,
989
1006
(
2017
).
26.
C.
Xi
,
C.
Ren
,
J.
Wang
,
Z.
Feng
, and
S. J.
Cao
, “
Impacts of urban-scale building height diversity on urban climates: A case study of Nanjing China
,”
Energy Build.
251
,
111350
(
2021
).
27.
Y. H.
Juan
,
A.
Rezaeiha
,
H.
Montazeri
,
B.
Blocken
,
C. Y.
Wen
, and
A. S.
Yang
, “
CFD assessment of wind energy potential for generic high-rise buildings in close proximity: Impact of building arrangement and height
,”
Appl. Energy
321
,
119328
(
2022
).
28.
Y. H.
Juan
,
A.
Rezaeiha
,
H.
Montazeri
,
B.
Blocken
, and
A. S.
Yang
, “
Improvement of wind energy potential through building corner modifications in compact urban areas
,”
J. Wind Eng. Ind. Aerodyn.
248
,
105710
(
2024
).
29.
A. V.
Díaz
and
I. H.
Moya
, “
Urban wind energy with resilience approach for sustainable cities in tropical regions: A review
,”
Renewable Sustain. Energy
199
,
114525
(
2024
).
30.
X.
Zheng
,
H.
Montazeri
, and
B.
Blocken
, “
CFD simulations of wind flow and mean surface pressure for buildings with balconies: Comparison of RANS and LES
,”
Build. Environ.
173
,
106747
(
2020
).
31.
H.
Montazeri
and
F.
Montazeri
, “
CFD simulation of cross-ventilation in buildings using rooftop wind-catchers: Impact of outlet openings
,”
Renewable Energy
118
,
502
520
(
2018
).
32.
H.
Montazeri
,
B.
Blocken
,
W. D.
Janssen
, and
T.
van Hooff
, “
CFD evaluation of new second-skin facade concept for wind comfort on building balconies: Case study for the Park Tower in Antwerp
,”
Build. Environ.
68
,
179
192
(
2013
).
33.
Y. M.
Su
and
C. J.
Hsieh
, “
The influence of balcony greening of high-rise buildings on urban wind and thermal environment: A case of an ideal city
,” in
Advanced Problems in Mechanics. APM 2019
, Lecture Notes in Mechanical Engineering, edited by
D.
Indeitsev
and
A.
Krivtsov
(
Springer
,
Cham
,
2020
).
34.
X.
Zheng
,
H.
Montazeri
, and
B.
Blocken
, “
CFD analysis of the impact of geometrical characteristics of building balconies on near-façade wind flow and surface pressure
,”
Build. Environ.
200
,
107904
(
2021
).
35.
F.
Afshari
,
B.
Muratçobanoğlu
,
E.
Mandev
,
M. A.
Ceviz
, and
Z.
Mirzaee
, “
Effects of double glazing, black wall, black carpeted floor and insulation on thermal performance of solar-glazed balconies
,”
Energy Build.
285
,
112919
(
2023
).
36.
I.
Loche
,
F.
Bre
,
J. M.
Gimenez
,
R.
Loonen
, and
L. O.
Neves
, “
Balcony design to improve natural ventilation and energy performance in high-rise mixed-mode office buildings
,”
Build. Environ.
258
,
111636
(
2024
).
37.
L. V.
White
and
S. J.
Wakes
, “
Permitting best use of wind resource for small wind-turbines in rural New Zealand: A micro-scale CFD examination
,”
Energy Sustain. Dev.
21
,
1
6
(
2014
).
38.
F.
Toja-Silva
,
C.
Peralta
,
O.
Lopez-Garcia
,
J.
Navarro
, and
I.
Cruz
, “
Roof region dependent wind potential assessment with different RANS turbulence models
,”
J. Wind Eng. Ind. Aerodyn.
142
,
258
271
(
2015
).
39.
C.
Alanis Ruiz
,
I.
Kalkman
, and
B.
Blocken
, “
Aerodynamic design optimization of ducted openings through high-rise buildings for wind energy harvesting
,”
Build. Environ.
202
,
108028
(
2021
).
40.
B.
Blocken
,
T.
Stathopoulos
,
F.
Asce
, and
J.
Carmeliet
, “
Wind environmental conditions in passages between two long narrow perpendicular buildings
,”
J. Aerosp. Eng.
21
(
4
),
280
287
(
2008
).
41.
A.
Sharma
,
H.
Mittal
, and
A.
Gairola
, “
Detached-eddy simulation of interference between buildings in tandem arrangement
,”
J. Build. Eng.
21
,
129
140
(
2019
).
42.
Y. T.
Lee
,
Y. L.
Lo
,
Y. H.
Juan
,
Z.
Li
,
C. Y.
Wen
, and
A. S.
Yang
, “
Effect of void space arrangement on wind power potential and pressure coefficient distributions for high-rise void buildings
,”
J. Build. Eng.
75
,
107061
(
2023
).
43.
Y.
Tominaga
and
M.
Shirzadi
, “
Wind tunnel measurement of three-dimensional turbulent flow structures around a building group: Impact of high-rise buildings on pedestrian wind environment
,”
Build. Environ.
206
,
108389
(
2021
).
44.
Y.
Tominaga
and
M.
Shirzadi
, “
Wind tunnel measurement dataset of 3D turbulent flow around a group of generic buildings with and without a high-rise building
,”
Data Brief
39
,
107504
(
2021
).
45.
Y.
Tominaga
,
A.
Mochida
,
R.
Yoshie
,
H.
Kataoka
,
T.
Nozu
,
M.
Yoshikawa
, and
T.
Shirasawa
, “
AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings
,”
J. Wind Eng. Ind. Aerodyn.
96
(
10–11
),
1749
1761
(
2008
).
46.
P. J.
Roache
, “
Quantification of uncertainty in computational fluid dynamics
,”
Annu. Rev. Fluid Mech.
29
(
1
),
123
160
(
1997
).
47.
Z.
Liu
,
Z.
Yu
,
X.
Chen
,
R.
Cao
, and
F.
Zhu
, “
An investigation on external airflow around low-rise building with various roof types: PIV measurements and LES simulations
,”
Build. Environ.
169
,
106583
(
2020
).
48.
J.
Liu
,
J.
Niu
,
Y.
Du
,
C. M.
Mak
, and
Y.
Zhang
, “
LES for pedestrian level wind around an idealized building array—Assessment of sensitivity to influencing parameters
,”
Sustain. Cities Soc.
44
,
406
415
(
2019
).
49.
D.
Hertwig
,
G.
Patnaik
, and
B.
Leitl
, “
LES validation of urban flow, part 1: Flow statistics and frequency distributions
,”
Environ. Fluid Mech.
17
(
3
),
521
550
(
2017
).
50.
International Electrotechnical Commission (IEC)
,
Wind Turbines—Part 1: Design Requirements, IEC61400–1
(
International Electrotechnical Commission
,
2005
).
51.
D.
Elliott
,
C.
Holladay
,
W.
Barchet
,
H.
Foote
, and
W.
Sandusky
, “
Wind energy resource atlas of the United States
,”
Tech. Rep. No. 87
(
1987
).
You do not currently have access to this content.