Numerous wind farms are planned and built in the coastal or forest-to-grassland transition areas with abrupt rough-to-smooth surface roughness change. Behind the abrupt change, the atmospheric boundary layer (ABL) undergoes a complex transition process which brings big challenges to the canonical wake models of wind turbines. To this end, we employ large eddy simulation (LES) to investigate the development of the ABL and the evolution of wind-turbine wakes at different positions under roughness abruption from rough to smooth, and propose a novel analytical wake model. Due to the abrupt change of surface roughness, pressure gradient forms around the abruption and the internal boundary layer (IBL) develops downstream. The wind turbine near the abruption point is influenced by the pressure gradient, resulting in smaller wake width, while those situated within the IBL are significantly affected by the flow transition, resulting in systematic differences in wake recovery. To explicitly account for the flow transition in the wake model, we introduce an equivalent additional thrust to represent the momentum contribution caused by both background velocity and Reynolds stress. A detailed budget analysis is then conducted around the wind turbine and shows that the equivalent additional thrust is highly correlated with the streamwise turbulence intensity. Finally, a new wake model under roughness abruption is developed and compared with the LES data. Results show that the proposed model demonstrates superior performance over the existing models.

1.
P.
Veers
,
K.
Dykes
,
E.
Lantz
,
S.
Barth
,
C. L.
Bottasso
,
O.
Carlson
,
A.
Clifton
,
J.
Green
,
P.
Green
,
H.
Holttinen
et al, “
Grand challenges in the science of wind energy
,”
Science
366
,
eaau2027
(
2019
).
2.
R. J.
Barthelmie
,
S. C.
Pryor
,
S. T.
Frandsen
,
K. S.
Hansen
,
J.
Schepers
,
K.
Rados
,
W.
Schlez
,
A.
Neubert
,
L.
Jensen
, and
S.
Neckelmann
, “
Quantifying the impact of wind turbine wakes on power output at offshore wind farms
,”
J. Atmos. Ocean. Technol.
27
,
1302
1317
(
2010
).
3.
R. J.
Barthelmie
,
K.
Hansen
,
S. T.
Frandsen
,
O.
Rathmann
,
J.
Schepers
,
W.
Schlez
,
J.
Phillips
,
K.
Rados
,
A.
Zervos
,
E.
Politis
et al, “
Modelling and measuring flow and wind turbine wakes in large wind farms offshore
,”
Wind Energy
12
,
431
444
(
2009
).
4.
B.
Li
,
M.
Ge
,
X.
Li
, and
Y.
Liu
, “
A physics-guided machine learning framework for real-time dynamic wake prediction of wind turbines
,”
Phys. Fluids
36
,
035143
(
2024
).
5.
B.
Li
,
M.
Ge
,
X.
Li
, and
Y.
Liu
, “
Dynamic wake steering control for maximizing wind farm power based on a physics-guided neural network dynamic wake model
,”
Phys. Fluids
36
,
085163
(
2024
).
6.
N. O.
Jensen
,
A Note on Wind Generator Interaction
(
Risø National Laboratory
,
1983
).
7.
M.
Bastankhah
and
F.
Porté-Agel
, “
A new analytical model for wind-turbine wakes
,”
Renewable Energy
70
,
116
123
(
2014
).
8.
M.
Ge
,
Y.
Wu
,
Y.
Liu
, and
Q.
Li
, “
A two-dimensional model based on the expansion of physical wake boundary for wind-turbine wakes
,”
Appl. Energy
233–234
,
975
984
(
2019
).
9.
C. R.
Shapiro
,
G. M.
Starke
,
C.
Meneveau
, and
D. F.
Gayme
, “
A wake modeling paradigm for wind farm design and control
,”
Energies
12
,
2956
(
2019
).
10.
T.
Ishihara
and
G.-W.
Qian
, “
A new Gaussian-based analytical wake model for wind turbines considering ambient turbulence intensities and thrust coefficient effects
,”
J. Wind Eng. Ind. Aerodyn.
177
,
275
292
(
2018
).
11.
B.
Du
,
M.
Ge
, and
Y.
Liu
, “
A physical wind-turbine wake growth model under different stratified atmospheric conditions
,”
Wind Energy
25
,
1812
1836
(
2022
).
12.
Y.
Cheng
,
M.
Zhang
,
Z.
Zhang
, and
J.
Xu
, “
A new analytical model for wind turbine wakes based on Monin-Obukhov similarity theory
,”
Appl. Energy
239
,
96
106
(
2019
).
13.
E.
Jézéquel
,
F.
Blondel
, and
V.
Masson
, “
Breakdown of the velocity and turbulence in the wake of a wind turbine–Part 2: Analytical modelling
,”
Wind Energy Sci.
9
,
119
139
(
2024
).
14.
S.
Shamsoddin
and
F.
Porté-Agel
, “
Turbulent planar wakes under pressure gradient conditions
,”
J. Fluid Mech.
830
,
R4
(
2017
).
15.
S.
Shamsoddin
and
F.
Porté-Agel
, “
A model for the effect of pressure gradient on turbulent axisymmetric wakes
,”
J. Fluid Mech.
837
,
R3
(
2018
).
16.
A. S.
Dar
,
A. S.
Gertler
, and
F.
Porté-Agel
, “
An experimental and analytical study of wind turbine wakes under pressure gradient
,”
Phys. Fluids
35
,
045140
(
2023
).
17.
J.
Schulz-Stellenfleth
,
S.
Emeis
,
M.
Dörenkämper
,
J.
Bange
,
B.
Cañadillas
,
T.
Neumann
,
J.
Schneemann
,
I.
Weber
,
K.
Zum Berge
,
A.
Platis
et al, “
Coastal impacts offshore wind farms—A review focussing German bight area
,”
Meteorol. Z.
31
,
289
315
(
2022
).
18.
R.
Barthelmie
,
J.
Badger
,
S.
Pryor
,
C. B.
Hasager
,
M. B.
Christiansen
, and
B.
Jørgensen
, “
Offshore coastal wind speed gradients: Issues for the design and development of large offshore windfarms
,”
Wind Eng.
31
,
369
382
(
2007
).
19.
A.
Beljaars
,
A.
Holtslag
, and
W.
Turkenburg
, “
Diabatic wind speed profiles in coastal regions: Comparison of an internal boundary layer (IBL) model with observations
,”
Boundary-Layer Meteorol.
51
,
49
75
(
1990
).
20.
K.
Nakao
and
Y.
Hattori
, “
Interaction between heterogeneous thermal stratification and wakes of wind turbine arrays
,”
Wind Energy
26
,
163
(
2023
).
21.
X. I.
Yang
, “
On the mean flow behaviour in the presence of regional-scale surface roughness heterogeneity
,”
Boundary-Layer Meteorol.
161
,
127
143
(
2016
).
22.
E.
Bou-Zeid
,
M. B.
Parlange
, and
C.
Meneveau
, “
On the parameterization of surface roughness at regional scales
,”
J. Atmos. Sci.
64
,
216
227
(
2007
).
23.
K.
Rao
,
J.
Wyngaard
, and
O.
Coté
, “
The structure of the two-dimensional internal boundary layer over a sudden change of surface roughness
,”
J. Atmos. Sci.
31
,
738
746
(
1974
).
24.
J.
Garratt
, “
The internal boundary layer—A review
,”
Boundary-Layer Meteorol.
50
,
171
203
(
1990
).
25.
W. P.
Elliott
, “
The growth of the atmospheric internal boundary layer
,”
Eos, Trans. Am. Geophys. Union
39
(6),
1048
1054
(
1958
).
26.
D.
Wood
, “
Internal boundary layer growth following a step change in surface roughness
,”
Boundary-Layer Meteorol.
22
,
241
244
(
1982
).
27.
S. A.
Savelyev
and
P. A.
Taylor
, “
Notes on an internal boundary-layer height formula
,”
Boundary-Layer Meteorol.
101
,
293
301
(
2001
).
28.
L. P.
Chamorro
and
F.
Porté-Agel
, “
Velocity and surface shear stress distributions behind a rough-to-smooth surface transition: A simple new model
,”
Boundary-Layer Meteorol.
130
,
29
41
(
2009
).
29.
N. S.
Ghaisas
, “
A predictive analytical model for surface shear stresses and velocity profiles behind a surface roughness jump
,”
Boundary-Layer Meteorol.
176
,
349
368
(
2020
).
30.
K.
Mondal
,
N. N.
Kethavath
,
K.
Abhinay
, and
N. S.
Ghaisas
, “
Large eddy simulation study of atmospheric boundary layer flow over an abrupt rough-to-smooth surface roughness transition
,”
Boundary-Layer Meteorol.
188
,
229
257
(
2023
).
31.
J.
Cooke
,
D.
Jerolmack
, and
G. I.
Park
, “
Mesoscale structure of the atmospheric boundary layer across a natural roughness transition
,”
Proc. Natl. Acad. Sci. U. S. A.
121
,
e2320216121
(
2024
).
32.
J. P.
Goit
and
A.
Önder
, “
The effect of coastal terrain on nearshore offshore wind farms: A large-eddy simulation study
,”
J. Renewable Sustainable Energy
14
,
043304
(
2022
).
33.
N. N.
Kethavath
and
N. S.
Ghaisas
, “
Effect of an abrupt rough-to-smooth surface roughness transition on wind farm wakes: An LES and analytical modeling study
,”
J. Renewable Sustainable Energy
16
,
033302
(
2024
).
34.
N. N.
Kethavath
,
K.
Mondal
, and
N. S.
Ghaisas
, “
Large-eddy simulation and analytical modeling study of the wake of a wind turbine behind an abrupt rough-to-smooth surface roughness transition
,”
Phys. Fluids
34
,
125117
(
2022
).
35.
B.
Du
,
M.
Ge
,
C.
Zeng
,
G.
Cui
, and
Y.
Liu
, “
Influence of atmospheric stability on wind-turbine wakes with a certain hub-height turbulence intensity
,”
Phys. Fluids
33
,
055111
(
2021
).
36.
Z.
Zhang
,
P.
Huang
,
G.
Bitsuamlak
, and
S.
Cao
, “
Large-eddy simulation of wind-turbine wakes over two-dimensional hills
,”
Phys. Fluids
34
,
065123
(
2022
).
37.
M.
Calaf
,
C.
Meneveau
, and
J.
Meyers
, “
Large eddy simulation study of fully developed wind-turbine array boundary layers
,”
Phys. Fluids
22
,
015110
(
2010
).
38.
H.
Zhang
,
M.
Ge
,
Y.
Liu
, and
X. I.
Yang
, “
A new coupled model for the equivalent roughness heights of wind farms
,”
Renewable Energy
171
,
34
46
(
2021
).
39.
E.
Bou-Zeid
,
C.
Meneveau
, and
M.
Parlange
, “
A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows
,”
Phys. Fluids
17
,
025105
(
2005
).
40.
L. A.
Martínez-Tossas
,
M. J.
Churchfield
, and
S.
Leonardi
, “
Large eddy simulations of the flow past wind turbines: Actuator line and disk modeling
,”
Wind Energy
18
,
1047
1060
(
2015
).
41.
Y.-T.
Wu
and
F.
Porté-Agel
, “
Modeling turbine wakes and power losses within a wind farm using LES: An application to the horns rev offshore wind farm
,”
Renewable Energy
75
,
945
955
(
2015
).
42.
M.
Lin
and
F.
Porté-Agel
, “
Large-eddy simulation of a wind-turbine array subjected to active yaw control
,”
Wind Energy Sci.
7
,
2215
2230
(
2022
).
43.
J.
Jonkman
,
S.
Butterfield
,
W.
Musial
, and
G.
Scott
, “
Definition of a 5-MW reference wind turbine for offshore system development
,”
Technical Report No. NREL/TP-500-38060
(
National Renewable Energy Laboratory
,
2009
).
44.
R. J.
Stevens
,
J.
Graham
, and
C.
Meneveau
, “
A concurrent precursor inflow method for large eddy simulations and applications to finite length wind farms
,”
Renewable Energy
68
,
46
50
(
2014
).
45.
A.
Peña
,
S.-E.
Gryning
, and
C. B.
Hasager
, “
Comparing mixing-length models of the diabatic wind profile over homogeneous terrain
,”
Theor. Appl. Climatol.
100
,
325
335
(
2010
).
46.
N.
Bempedelis
,
S.
Laizet
, and
G.
Deskos
, “
Turbulent entrainment in finite-length wind farms
,”
J. Fluid Mech.
955
,
A12
(
2023
).
47.
W.
Munters
,
C.
Meneveau
, and
J.
Meyers
, “
Shifted periodic boundary conditions for simulations of wall-bounded turbulent flows
,”
Phys. Fluids
28
,
025112
(
2016
).
48.
F.
Zhang
,
X.
Yang
, and
G.
He
, “
Multiscale analysis of a very long wind turbine wake in an atmospheric boundary layer
,”
Phys. Rev. Fluids
8
,
104605
(
2023
).
49.
E. W.
Peterson
, “
Relative importance of terms in the turbulent-energy and momentum equations as applied to the problem of a surface roughness change
,”
J. Atmos. Sci.
29
,
1470
1476
(
1972
).
50.
L.
Davidson
,
Fluid Mechanics, Turbulent Flow and Turbulence Modeling
(
Chalmers University of Technology
,
2015
).
51.
M.
Bastankhah
,
B. L.
Welch
,
L. A.
Martínez-Tossas
,
J.
King
, and
P.
Fleming
, “
Analytical solution for the cumulative wake of wind turbines in wind farms
,”
J. Fluid Mech.
911
,
A53
(
2021
).
52.
F.
Porté-Agel
,
M.
Bastankhah
, and
S.
Shamsoddin
, “
Wind-turbine and wind-farm flows: A review
,”
Boundary-Layer Meteorol.
174
,
1
59
(
2020
).
53.
M.
Bastankhah
,
M. M.
Mohammadi
,
C.
Lees
,
G. P. N.
Diaz
,
O. R.
Buxton
, and
S.
Ivanell
, “
A fast-running physics-based wake model for a semi-infinite wind farm
,”
J. Fluid Mech.
985
,
A43
(
2024
).
54.
M.
Abkar
and
F.
Porté-Agel
, “
Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study
,”
Phys. Fluids
27
,
035104
(
2015
).
55.
M. P.
van der Laan
,
M.
Baungaard
, and
M.
Kelly
, “
Brief communication: A clarification of wake recovery mechanisms
,”
Wind Energy Sci.
8(2), 247–254 (2023).
56.
T.
Burton
,
N.
Jenkins
,
D.
Sharpe
, and
E.
Bossanyi
,
Wind Energy Handbook
(
Wiley
,
2011
).
57.
J.
Feng
,
W. Z.
Shen
, and
Y.
Li
, “
An optimization framework for wind farm design in complex terrain
,”
Appl. Sci.
8
,
2053
(
2018
).
58.
L.
Lanzilao
and
J.
Meyers
, “
A new wake-merging method for wind-farm power prediction in the presence of heterogeneous background velocity fields
,”
Wind Energy
25
,
237
259
(
2022
).
59.
B.
Du
,
M.
Ge
,
X.
Li
, and
Y.
Liu
, “
A momentum-conserving wake superposition method for wind-farm flows under pressure gradient
,”
J. Fluid Mech.
999
,
A27
(
2024
).
60.
L.
Li
,
Z.
Huang
,
M.
Ge
, and
Q.
Zhang
, “
A novel three-dimensional analytical model of the added streamwise turbulence intensity for wind-turbine wakes
,”
Energy
238
,
121806
(
2022
).
61.
W.-C.
Cheng
and
F.
Porté-Agel
, “
A simple physically-based model for wind-turbine wake growth in a turbulent boundary layer
,”
Boundary-Layer Meteorol.
169
,
1
10
(
2018
).
62.
D.
Vahidi
and
F.
Porté-Agel
, “
A physics-based model for wind turbine wake expansion in the atmospheric boundary layer
,”
J. Fluid Mech.
943
,
A49
(
2022
).
63.
A.
Niayifar
and
F.
Porté-Agel
, “
Analytical modeling of wind farms: A new approach for power prediction
,”
Energies
9
,
741
(
2016
).
64.
F.
Carbajo Fuertes
,
C. D.
Markfort
, and
F.
Porté-Agel
, “
Wind turbine wake characterization with nacelle-mounted wind lidars for analytical wake model validation
,”
Remote Sens.
10
,
668
(
2018
).
65.
D.
Vahidi
and
F.
Porté-Agel
, “
Influence of incoming turbulent scales on the wind turbine wake: A large-eddy simulation study
,”
Phys. Fluids
36
,
095177
(
2024
).
66.
S.
Gambuzza
and
B.
Ganapathisubramani
, “
The influence of free stream turbulence on the development of a wind turbine wake
,”
J. Fluid Mech.
963
,
A19
(
2023
).
You do not currently have access to this content.