Although various structural modifications of the impeller and volute are employed to suppress flow-induced noise, few such modifications focus on the relationship between the generation and the variation of flow and noise. Herein, the spatiotemporal evolution of vortex structure and noise source in impeller and volute is investigated by vortex sound theory and spectral proper orthogonal decomposition (sPOD). The results show that the tip leakage vortex (TLV) formed near the blade leading edge is a significant noise source. As the TLV develops into a passage vortex, the strength of noise source gradually decreases. Within the passage, the noise source at 90% span attenuates because of the interaction between shed vortices, whereas the noise at 50% span is due to the spatial interaction of noise source. Furthermore, the variation of entropy production correlates with noise source. In the near-tongue region, the dominant rotation frequency and second blade passing frequency (2BPF) are obtained by sPOD, which reveals that the jet wake is extracted at 2BPF and flow patterns featuring strip-like structures appear. Correspondingly, the noise source forms a multiscale dotted distribution near the blade trailing edge (BTE). In comparison with original BTE, the wavy BTE effectively suppresses the multiscale pattern of noise source generated from the BTE at rotation frequency and 2BPF, with a decrease in about 20.75% and 8.35% in the total energy of the two leading modes. However, the characteristics of noise source near the tongue remain unchanged. These findings provide meaningful insights into the noise reduction of centrifugal pump.

1.
Y.
Lu
,
M.
Liu
,
L.
Tan
, and
D.
Liu
, “
Design method for impeller of centrifugal pump with guide vanes based on Oseen vortex
,”
J. Fluids Eng.
146
(
6
),
061205
(
2024
).
2.
Z.
Yuan
,
Y.
Zhang
,
W.
Zhou
, and
C.
Wang
, “
Hydraulic loss analysis in a pump-turbine with special emphasis on local rigid vortex and shear
,”
Phys. Fluids
34
(
12
),
125101
(
2022
).
3.
B. F.
Yang
,
L.
Jin
,
X. F.
Wang
,
H.
Chen
, and
S. H.
Huo
, “
Vibration characteristics of the turbopump casing under two different fluid force transmission paths
,”
J. Rocket Propul.
49
(
1
),
72
79
(
2023
).
4.
R.
Tao
,
X.
Zhao
, and
Z.
Wang
, “
Evaluating the transient energy dissipation in a centrifugal impeller under rotor-stator interaction
,”
Entropy Basel
21
(
3
),
271
(
2019
).
5.
Y.
Yuan
,
S.
Yuan
, and
L.
Tang
, “
Numerical investigation on the mechanism of double-volute balancing radial hydraulic force on the centrifugal pump
,”
Processes
7
(
10
),
689
(
2019
).
6.
Q.
Yu
,
X. F.
Wang
,
D.
Zhang
, and
H. M.
Li
, “
Effect of volute throat area on pump performance
,”
J. Rocket Propul.
43
(
6
),
44
47, 96
(
2017
).
7.
V. S.
Lobanoff
and
R. R.
Ross
,
Centrifugal Pumps: Design and Application
(
Elsevier
,
2013
).
8.
Y.
Tsujimoto
,
H.
Tanaka
,
P.
Doerfler
,
K.
Yonezawa
,
T.
Suzuki
, and
K.
Makikawa
, “
Effects of acoustic resonance and volute geometry on phase resonance in a centrifugal fan
,”
Int. J. Fluid Mach. Syst.
6
(
2
),
75
86
(
2013
).
9.
E. M.
Mina
,
R. N.
Abdelmessih
, and
M. E.
Matbouly
, “
Reduction of radial thrust by using triple-volute casing
,”
Ain Shams Eng. J.
10
(
4
),
721
729
(
2019
).
10.
A. E.
Khalifa
,
A. M.
Al-Qutub
, and
R.
Ben-Mansour
, “
Study of pressure fluctuations and induced vibration at blade-passing frequencies of a double volute pump
,”
Arab. J. Sci. Eng.
36
,
1333
1345
(
2011
).
11.
A.
Khalifa
and
A.
Al-Qutub
, “
The effect of impeller-volute gap on pressure fluctuations inside a double volute-centrifugal pump operating at reduced flow rates
,” in
7th World Conference on experimental Heat Transfer, Fluid Mechanics and Thermodynamics
(
Krakow, Poland
,
2009
).
12.
Z.
Wang
,
Z.
Qian
,
J.
Lu
, and
P.
Wu
, “
Effects of flow rate and rotational speed on pressure fluctuations in a double-suction centrifugal pump
,”
Energy
170
,
212
227
(
2019
).
13.
A. M.
Al-Qutub
,
A. E.
Khalifa
, and
F. A.
Al-Sulaiman
, “
Exploring the effect of V-shaped cut at blade exit of a double volute centrifugal pump
,”
J. Press. Vessel Technol.
134
(
2
),
021301
(
2012
).
14.
V. M.
Arocena
and
L. A. M.
Danao
, “
Improving the modeling of pressure pulsation and cavitation prediction in a double-volute double-suction pump using mosaic meshing technology
,”
Processes
11
(
3
),
660
(
2023
).
15.
D.
Klimenko
,
A.
Kondratov
,
S.
Timushev
, and
J.
Li
, “
Study of BPF pressure pulsations reduction in centrifugal bladed machines using splitters
,”
J. Phys.: Conf. Ser.
1925
(
1
),
012063
(
2021
).
16.
H.-S.
Shim
,
A.
Afzal
,
K.-Y.
Kim
, and
H.-S.
Jeong
, “
Three-objective optimization of a centrifugal pump with double volute to minimize radial thrust at off-design conditions
,”
Proc. Inst. Mech. Eng. Part J. Power Energy
230
(
6
),
598
615
(
2016
).
17.
A. R.
Al-Obaidi
and
A.
Qubian
, “
Effect of outlet impeller diameter on performance prediction of centrifugal pump under single-phase and cavitation flow conditions
,”
Int. J. Nonlinear Sci. Numer. Simul.
23
(
7–8
),
1203
1229
(
2022
).
18.
Subroto
and
M.
Effendy
, “
Optimization of centrifugal pump performance with various blade number
,”
AIP Conf. Proc.
2114
(
1
),
020016
(
2019
).
19.
X. L.
Huang
,
B. F.
Yang
,
J. F.
Yan
,
C. L.
Li
, and
K. F.
Xu
, “
Multi-parameter hydraulic optimization of inducer based on response surface method
,”
J. Rocket Propul.
49
(
5
),
73
80
(
2023
).
20.
R.
Xiang
,
T.
Wang
,
Y.
Fang
,
H.
Yu
,
M.
Zhou
, and
X.
Zhang
, “
Effect of blade curve shape on the hydraulic performance and pressure pulsation of a pump as turbine
,”
Phys. Fluids
34
(
8
),
085130
(
2022
).
21.
A. E.
Khalifa
, “
Effect of blade exit shape on performance and vibration of a double volute centrifugal pump
,”
Int. J. Mater. Mech. Manuf.
2
(
4
),
261
264
(
2014
).
22.
O.
Litfin
,
A.
Delgado
,
K.
Haddad
, and
H.
Klein
, “
Numerical and experimental investigation of trailing edge modifications of centrifugal wastewater pump impellers
,” in
Symp. Keynotes Adv. Numer. Model. Turbomach. Flow Optim. Fluid Mach. Ind. Environ. Appl. Fluid Mech. Pump. Mach.
(
American Society of Mechanical Engineers
,
Waikoloa, Hawaii
,
2017
), Vol.
1A
, p.
V01AT05A008
.
23.
Y.
Lin
,
X.
Li
,
Z.
Zhu
,
X.
Wang
,
T.
Lin
, and
H.
Cao
, “
An energy consumption improvement method for centrifugal pump based on bionic optimization of blade trailing edge
,”
Energy
246
,
123323
(
2022
).
24.
H.
Liu
,
Y.
Lu
,
J.
Yang
,
X.
Wang
,
J.
Ju
,
J.
Tu
,
Z.
Yang
,
H.
Wang
, and
X.
Lai
, “
Aeroacoustic optimization of the bionic leading edge of a typical blade for performance improvement
,”
Machines
9
(
8
),
175
(
2021
).
25.
Y.
Lin
,
X.
Li
,
B.
Li
,
X.
Jia
, and
Z.
Zhu
, “
Influence of impeller sinusoidal tubercle trailing-edge on pressure pulsation in a centrifugal pump at nominal flow rate
,”
J. Fluids Eng.
143
,
091205
(
2021
).
26.
M.
Sadeghimalekabadi
,
A.
Davari
, and
M.
Fadaei
, “
Noise reduction in small wind turbines with optimized serrated blades
,”
Phys. Fluids
36
(
5
),
057135
(
2024
).
27.
J.
Ye
,
M.
Xu
,
P.
Xing
,
Y.
Cheng
,
D.
Meng
,
Y.
Tang
, and
M.
Zhu
, “
Investigation of aerodynamic noise reduction of exterior side view mirror based on bionic shark fin structure
,”
Appl. Acoust.
182
,
108188
(
2021
).
28.
C.
Dai
,
C.
Guo
,
Y.
Chen
,
L.
Dong
, and
H.
Liu
, “
Analysis of the influence of different bionic structures on the noise reduction performance of the centrifugal pump
,”
Sens. Basel
21
(
3
),
886
(
2021
).
29.
Y.
Wei
,
L.
Zhu
,
W.
Zhang
, and
Z.
Wang
, “
Numerical and experimental investigations on the flow and noise characteristics in a centrifugal fan with step tongue volutes
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
234
(
15
),
2979
2993
(
2020
).
30.
R.
Gangipamula
,
P.
Ranjan
, and
R. S.
Patil
, “
Study on fluid dynamic characteristics of a low specific speed centrifugal pump with emphasis on trimming operations
,”
Int. J. Heat Fluid Flow
95
,
108952
(
2022
).
31.
C.
Xu
,
H.
Zhou
, and
Y.
Mao
, “
Analysis of vibration and noise induced by unsteady flow inside a centrifugal compressor
,”
Aerosp. Sci. Technol.
107
,
106286
(
2020
).
32.
R.
Gangipamula
,
P.
Ranjan
, and
R. S.
Patil
, “
Comparative studies on air borne noise and flow induced noise of a double suction centrifugal pump
,”
Appl. Acoust.
202
,
109148
(
2023
).
33.
D.
Li
,
N.
Zhang
,
J.
Jiang
,
B.
Gao
,
A. A.
Alubokin
,
W.
Zhou
, and
J.
Shi
, “
Numerical investigation on the unsteady vortical structure and pressure pulsations of a centrifugal pump with the vaned diffuser
,”
Int. J. Heat Fluid Flow
98
,
109050
(
2022
).
34.
Q.
Meng
and
Z.
Ji
, “
Prediction and analysis for airflow generated noise inside mufflers based on large eddy simulation and morhing acoustic analogy
,”
Phys. Fluids
36
(
6
),
065123
(
2024
).
35.
L.-J.
Jiang
,
R.-H.
Zhang
,
X.-B.
Chen
, and
G.-Q.
Guo
, “
Analysis of the high-speed jet in a liquid-ring pump ejector using a proper orthogonal decomposition method
,”
Eng. Appl. Comput. Fluid Mech.
16
(
1
),
1382
1394
(
2022
).
36.
J.
Yang
,
X.
Feng
,
Z.
Liao
,
K.
Pan
, and
X.
Liu
, “
Analysis on the mechanism of rotating stall inner a pump turbine in pump mode based on the proper orthogonal decomposition
,”
J. Fluids Eng.
145
,
091202
(
2023
).
37.
A.
Nekkanti
and
O. T.
Schmidt
, “
Frequency–time analysis, low-rank reconstruction and denoising of turbulent flows using SPOD
,”
J. Fluid Mech.
926
,
A26
(
2021
).
38.
G.
Mengaldo
and
R.
Maulik
, “
PySPOD: A python package for spectral proper orthogonal decomposition (SPOD)
,”
J. Open Source Softw.
6
(
60
),
2862
(
2021
).
39.
M.
Rogowski
,
B. C. Y.
Yeung
,
O. T.
Schmidt
,
R.
Maulik
,
L.
Dalcin
,
M.
Parsani
, and
G.
Mengaldo
, “
Unlocking massively parallel spectral proper orthogonal decompositions in the PySPOD package
,”
Comput. Phys. Commun.
302
,
109246
(
2024
).
40.
W.
Shaofei
,
X.
Haowen
,
Q.
Zhongyang
, and
P.
Chong
, “
Coherent flow structures near tongue region in a centrifugal fan with forward-curved blades
,”
J. Fluids Eng.
145
,
031202
(
2022
).
41.
A.
Towne
,
O. T.
Schmidt
, and
T.
Colonius
, “
Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis
,”
J. Fluid Mech.
847
,
821
867
(
2018
).
42.
P.
Moise
,
M.
Zauner
, and
N. D.
Sandham
, “
Large-eddy simulations and modal reconstruction of laminar transonic buffet
,”
J. Fluid Mech.
944
,
A16
(
2022
).
43.
A.
Powell
, “
Theory of vortex sound
,”
J. Acoust. Soc. Am.
36
(
1
),
177
195
(
1964
).
44.
X.
Jia
,
Y.
Li
,
J.
Zhang
,
C.
Yan
,
Z.
Lin
, and
Z.
Zhu
, “
Research on the effects of volute area ratios on centrifugal pump internal flow and noise
,”
Phys. Fluids
36
(
7
),
075111
(
2024
).
45.
Z. C.
Wei
,
N.
Li
,
R. F.
Xiao
,
R.
Tao
,
W.
Yang
, and
H. L.
Hu
, “
Reduction of flow-induce noise of a high-speed centrifugal pump by applying blade leaning on guide vane
,”
J. Phys. Conf. Ser.
2217
(
1
),
012035
(
2022
).
46.
O. T.
Schmidt
and
T.
Colonius
, “
Guide to spectral proper orthogonal decomposition
,”
AIAA J.
58
(
3
),
1023
1033
(
2020
).
47.
R.
Barrio
,
J.
Parrondo
, and
E.
Blanco
, “
Numerical analysis of the unsteady flow in the near-tongue region in a volute-type centrifugal pump for different operating points
,”
Comput. Fluids
39
(
5
),
859
870
(
2010
).
48.
I. B.
Celik
,
Z. N.
Cehreli
, and
I.
Yavuz
, “
Index of resolution quality for large eddy simulations
,”
J. Fluids Eng.
127
(
5
),
949
958
(
2005
).
49.
C.
Kang
,
H.
Liu
,
Y.
Zhang
, and
N.
Mao
,
Methods for Solving Complex Problems in Fluids Engineering
(
Springer
,
2019
).
50.
S.
Melzer
,
A.
Pesch
,
S.
Schepeler
,
T.
Kalkkuhl
, and
R.
Skoda
, “
Three-dimensional simulation of highly unsteady and isothermal flow in centrifugal pumps for the local loss analysis including a wall function for entropy production
,”
J. Fluids Eng.
142
,
111209
(
2020
).
51.
Z.
Guo
,
W.
Xia
, and
Z.
Qian
, “
Study on noise of an axial flow waterjet pump with wavy leading edge
,”
Ocean Eng.
261
,
112117
(
2022
).
52.
M. A. O.
Lu-Qin
,
G. U. O.
Xin
,
L. I.
Lin
,
Q. I. A. O.
Wei-Yang
, and
T. O. N. G.
Fan
, “
Numerical simulation of BTI broadband noise reduction with wavy leading edge for sweep blade
,”
J. Eng. Thermophys.
42
(
08
),
1979
1988
(
2021
).
53.
F.
Kock
and
H.
Herwig
, “
Local entropy production in turbulent shear flows: A high-Reynolds number model with wall functions
,”
Int. J. Heat Mass Transfer
47
(
10–11
),
2205
2215
(
2004
).
54.
Z.
Zhang
,
B.
Gong
,
T.
Chen
,
N.
Li
,
Y.
Jin
,
H.
Jiang
,
J.
Zhao
, and
K.
Li
, “
Flow induced acoustic characteristics analysis of propulsion pump by indirect acoustic variable method and FE
,”
Ocean Eng.
313
,
119478
(
2024
).
You do not currently have access to this content.