Local scouring around a pier group is more complex than the one around a single pier. This study used numerical simulations to investigate the influence of coherent structures and their interactions on the development of scour hole around a pier group. The obtained results are validated with previous experimental findings. The simulations revealed that, in addition to the horseshoe vortex (HSV), other secondary vortices are present inside the scour hole. The interactions between them significantly changed the size and coherence of the HSV. The independent vortex interactions at the left and right piers led to differences in scour depth around those piers. The instantaneous velocity histograms revealed bimodal aperiodic oscillations in the HSV. The lateral movement of the detached legs of the HSV was found to be one of the reasons for the lateral expansion of the scour hole. The coherent structures are also extracted using a Lagrangian method called the Lagrangian coherent structures (LCSs). The obtained LCSs extracted the shear layers formed upstream of the pier group. They also revealed the presence of anchor-like structures upstream of the pier group within the scour hole. This study identified new mechanisms contributing to the formation of scour holes around pier groups.

1.
Ahmed
,
F.
and
Rajaratnam
,
N.
, “
Flow around bridge piers
,”
J. Hydraul. Eng.
124
,
288
300
(
1998
).
2.
Amini
,
A.
,
Melville
,
B. W.
,
Ali
,
T. M.
, and
Ghazali
,
A. H.
, “
Clear-water local scour around pile groups in shallow-water flow
,”
J. Hydraul. Eng.
138
,
177
185
(
2012
).
3.
Ataie-Ashtiani
,
B.
and
Beheshti
,
A. A.
, “
Experimental investigation of clear-water local scour at pile groups
,”
J. Hydraul. Eng.
132
,
1100
1104
(
2006
).
4.
Constantinescu
,
G.
,
Koken
,
M.
, and
Zeng
,
J.
, “
The structure of turbulent flow in an open channel bend of strong curvature with deformed bed: Insight provided by detached eddy simulation
,”
Water Resour. Res.
47
,
1
17
, https://doi.org/10.1029/2010WR010114 (
2011
).
5.
Dargahi
,
B.
, “
Controlling mechanism of local scouring
,”
J. Hydraul. Eng.
116
,
1197
1214
(
1990
).
6.
Dargahi
,
B.
, “
The turbulent flow field around a circular cylinder
,”
Exp. Fluids
8
,
1
12
(
1989
).
7.
Dey
,
S.
and
Raikar
,
V.
, “
Characteristics of horseshoe vortex in developing scour holes at piers
,”
J. Hydraul. Eng.
133
,
399
450
(
2007
).
8.
Flow Science, Inc
., see https://www.flow3d.com/ for “FLOW-3D® VR version 2023R1 users manual (2023)” (accessed November 1, 2024).
9.
Graf
,
W. H.
and
Istiarto
,
I.
, “
Flow pattern in the scour hole around a cylinder
,”
J. Hydraul. Res.
40
,
13
20
(
2002
).
10.
Guan
,
D.
,
Chiew
,
Y.-M.
,
Wei
,
M.
, and
Hsieh
,
S.-C.
, “
Characterization of horseshoe vortex in a developing scour hole at a cylindrical bridge pier
,”
Int. J. Sediment Res.
34
,
118
124
(
2019
).
11.
Gurugubelli
,
Y.
,
Timbadiya
,
P. V.
, and
Barman
,
B.
, “
Turbulent flow structures and Reynolds stress anisotropy in an asymmetric sinuous mobile channel
,”
Phys. Fluids
36
(
8
),
085173
(
2024
).
12.
Kalidindi
,
M. K.
and
Khosa
,
R.
, “
Evolution of coherent structures in the flow around a circular pier with a developing scour hole: A numerical study
,”
Phys. Fluids
36
(
2
),
25119
(
2024a
).
13.
Kalidindi
,
M. K.
and
Khosa
,
R.
, “
Lagrangian coherent structures around a bridge pier with scour hole
,”
Phys. Fluids
36
(
9
),
091705
(
2024b
).
14.
Kalidindi
,
M. K.
,
Khosa
,
R.
, and
Bairwa
,
A. K.
, “
Extraction of flow features around a bridge pier with an evolving scour hole using Lagrangian coherent structures
,”
Phys. Fluids
36
(
5
),
55133
(
2024
).
15.
Kang
,
S. K.
,
Lee
,
J.
,
Kim
,
Y.
, and
Khosronejad
,
A.
, “
Experimental and numerical study on the flow characteristics around spur dikes at different length-to-depth ratios
,”
Adv. Water Resour.
175
,
104428
(
2023
).
16.
Kang
,
S.
,
Khosronejad
,
A.
, and
Yang
,
X.
, “
Turbulent flow characteristics around a non-submerged rectangular obstacle on the side of an open channel
,”
Phys. Fluids
33
,
045106
(
2021
).
17.
Khosronejad
,
A.
,
Kang
,
S.
, and
Sotiropoulos
,
F.
, “
Experimental and computational investigation of local scour around bridge piers
,”
Adv. Water Resour.
37
,
73
85
(
2012
).
18.
Kim
,
H. S.
,
Nabi
,
M.
,
Kimura
,
I.
, and
Shimizu
,
Y.
, “
Numerical investigation of local scour at two adjacent cylinders
,”
Adv. Water Resour.
70
,
131
147
(
2014
).
19.
Kirkil
,
G.
and
Constantinescu
,
G.
, “
A numerical study of the laminar necklace vortex system and its effect on the wake for a circular cylinder
,”
Phys. Fluids
24
,
073602
(
2012
).
20.
Kirkil
,
G.
and
Constantinescu
,
G.
, “
Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder
,”
Phys. Fluids
27
,
075102
(
2015
).
21.
Kirkil
,
G.
and
Constantinescu
,
G.
, “
Flow and turbulence structure around an in-stream rectangular cylinder with scour hole
,”
Water Resour. Res.
46
,
1
20
, https://doi.org/10.1029/2010WR009336 (
2010
).
22.
Kirkil
,
G.
and
Constantinescu
,
G.
, “
Nature of flow and turbulence structure around an in-stream vertical plate in a shallow channel and the implications for sediment erosion
,”
Water Resour. Res.
45
,
1
18
, https://doi.org/10.1029/2008WR007363 (
2009
).
23.
Kirkil
,
G.
,
Constantinescu
,
G.
, and
Etterna
,
R.
, “
Detached Eddy simulation investigation of turbulence at a circular pier with scour hole
,”
J. Hydraul. Eng.
135
,
888
901
(
2009
).
24.
Kirkil
,
G.
,
Constantinescu
,
S. G.
, and
Ettema
,
R.
, “
Coherent structures in the flow field around a circular cylinder with scour hole
,”
J. Hydraul. Eng.
134
,
572
587
(
2008
).
25.
Lança
,
R.
,
Fael
,
C.
,
Maia
,
R.
,
Pêgo
,
J. P.
, and
Cardoso
,
A. H.
, “
Clear-water scour at pile groups
,”
J. Hydraul. Eng.
139
,
1089
1098
(
2013
).
26.
Lilly
,
D. K.
, “
A proposed modification of the Germano subgrid-scale closure method
,”
Phys. Fluids
4
(
3
),
633
635
(
1992
).
27.
Liu
,
M.
,
Huai
,
W.
, and
Ji
,
B.
, “
Characteristics of the flow structures through and around a submerged canopy patch
,”
Phys. Fluids
33
,
035144
(
2021
).
28.
Melville
,
B. W.
and
Raudkivi
,
A. J.
, “
Flow characterestics in local scour at bridge piers
,”
J. Hydraul. Res.
15
,
373
380
(
1977
).
29.
Meyer-Peter
,
E.
and
Müller
,
R.
, “
Formuls for bed load transport
,” in
Proceedings of the 2nd Meeting of the International Association for Hydraulic Structures Research
(
IAHR
,
1948
), pp.
39
64
.
30.
Pasupuleti
,
L. N.
,
Timbadiya
,
P. V.
, and
Patel
,
P. L.
, “
Flow field measurements around isolated, staggered, and tandem piers on a rigid bed channel
,”
Int. J. Civ. Eng.
20
,
569
586
(
2022a
).
31.
Pasupuleti
,
L. N.
,
Timbadiya
,
P. V.
, and
Patel
,
P. L.
, “
Flow fields around tandem and staggered piers on a mobile bed
,”
Int. J. Sediment Res.
37
,
737
753
(
2022b
).
32.
Raikar
,
R. V.
and
Dey
,
S.
, “
Kinematics of horseshoe vortex development in an evolving scour hole at a square cylinder
,”
J. Hydraul. Res.
46
,
247
264
(
2008
).
33.
Roulund
,
A.
,
Sumer
,
B. M.
,
Fredsøe
,
J.
, and
Michelsen
,
J.
, “
Numerical and experimental investigation of flow and scour around a circular pile
,”
J. Fluid Mech.
534
,
351
401
(
2005
).
34.
Shadden
,
S. C.
,
Lekien
,
F.
, and
Marsden
,
J. E.
, “
Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows
,”
Phys. D Nonlinear Phenom.
212
,
271
304
(
2005
).
35.
Sheppard
,
D. M.
,
Odeh
,
M.
, and
Glasser
,
T.
, “
Large scale clear-water local pier scour experiments
,”
J. Hydraul. Eng.
130
,
957
963
(
2004
).
36.
Smagorinsky
,
J.
, “
General circulation experiments with the primitive equations
,”
Mon. Wea. Rev.
91
,
99
164
(
1963
).
37.
Unger
,
J.
and
Hager
,
W. H.
, “
Down-flow and horseshoe vortex characteristics of sediment embedded bridge piers
,”
Exp. Fluids
42
,
1
19
(
2006
).
38.
Zhang
,
Q.
,
Zhou
,
X. L.
, and
Wang
,
J. H.
, “
Numerical investigation of local scour around three adjacent piles with different arrangements under current
,”
Ocean Eng.
142
,
625
638
(
2017
).
39.
Zhang
,
W.
,
Wang
,
L.
,
Melville
,
B. W.
,
Guan
,
D.
,
Whittaker
,
C. N.
, and
Shamseldin
,
A. Y.
, “
Characteristics of the flow field within a developing scour hole at a submerged weir
,”
J. Hydraul. Res.
60
,
283
294
(
2022
).
40.
Zhou
,
K.
,
Duan
,
J. G.
,
Asce
,
A. M.
, and
Bombardelli
,
F. A.
, “
Experimental and theoretical study of local scour around three-pier group
,”
J. Hydraul. Eng.
146
(
10
),
04020069
(
2020
).
You do not currently have access to this content.