Pulsating ventilation has been drawing extensive attention recently. Computational fluid dynamics (CFD), as a widely used and effective tool for investigating pulsating ventilation, often consumes significant computation time. To identify a suitable numerical scheme for this circumstance, we adopted the standard incremental pressure-correction (SIPC) method with higher-order temporal discretization schemes to simulate indoor airflow. To further improve the simulation efficiency, two adaptive time step size schemes were proposed and used to simulate both long-period and short-period pulsating ventilation conditions. Results showed that the SIPC scheme offers accuracy comparable to the PISO (pressure-implicit with splitting of operators) algorithm while saving about 40% of computation time. Higher-order temporal discretization schemes have minimal impact on the accuracy and stability of the SIPC scheme for simulating pulsating airflow, with the first-order Euler backward implicit scheme showing slightly higher efficiency. Compared to the conventional fixed time step size scheme (fixed scheme), both adaptive time step size schemes significantly reduce computation time with negligible impact on accuracy. The scheme that controls time step size based on a given maximum Courant number (MaxCo scheme) saves about 35% of computation time, while the scheme that combines a given maximum Courant number with the curvature of the inlet velocity-time curve (MaxCo+K scheme) to control time step size saves nearly 30%. Although the MaxCo+K scheme requires about 10% more computation time than the MaxCo scheme, it improved accuracy by approximately 10% by more accurately capturing the inlet velocity boundary condition in the short-period pulsating ventilation simulation.

1.
N. E.
Klepeis
,
W. C.
Nelson
,
W. R.
Ott
,
J. P.
Robinson
,
A. M.
Tsang
,
P.
Switzer
,
J. V.
Behar
,
S. C.
Hern
, and
W. H.
Engelmann
, “
The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants
,”
J. Exposure Sci. Environ. Epidemiol.
11
(
3
),
231
252
(
2001
).
2.
R.
Mai
,
R.
Krause
, and
C.
Friebe
, “
Enhancement of ventilation efficiency in residential buildings by pulsating air-flow
,”
E3S Web Conf.
111
(
2019
),
06067
(
2019
).
3.
M.
Fan
,
Z.
Fu
,
J.
Wang
,
Z.
Wang
,
H.
Suo
,
X.
Kong
, and
H.
Li
, “
A review of different ventilation modes on thermal comfort, air quality and virus spread control
,”
Build. Environ.
212
,
108831
(
2022
).
4.
D.
Al Assaad
,
K.
Ghali
, and
N.
Ghaddar
, “
Effectiveness of intermittent personalized ventilation assisting a chilled ceiling for enhanced thermal comfort and acceptable indoor air quality
,”
Build. Environ.
144
,
9
22
(
2018
).
5.
X.
Tian
,
S.
Zhang
,
Z.
Lin
,
Y.
Li
,
Y.
Cheng
, and
C.
Liao
, “
Experimental investigation of thermal comfort with stratum ventilation using a pulsating air supply
,”
Build. Environ.
165
,
106416
(
2019
).
6.
J.
Hua
,
Q.
Ouyang
,
Y.
Wang
,
H.
Li
, and
Y.
Zhu
, “
A dynamic air supply device used to produce simulated natural wind in an indoor environment
,”
Build. Environ.
47
(
1
),
349
356
(
2012
).
7.
C.
Du
,
H.
Liu
,
W.
Yu
,
Y.
Ji
,
K.
Yan
, and
L.
Ruan
, “
Characteristics and comfort evaluation of sinusoidal airflows by regulating motor rotating frequency of a floor fan
,”
Build. Simul.
15
(
6
),
1035
1049
(
2022
).
8.
X.
Tian
,
B.
Li
, and
Y.
Cheng
, “
Experimental study into turbulent characteristics of airflows under stratum ventilation with pulsating air supply: Comparison to steady air supply
,”
IOP Conf. Ser.: Earth Environ. Sci.
295
(
4
),
042078
(
2019
).
9.
C.
Wu
and
N. A.
Ahmed
, “
A novel mode of air supply for aircraft cabin ventilation
,”
Build. Environ.
56
,
47
56
(
2012
).
10.
T.
van Hooff
and
B.
Blocken
, “
Mixing ventilation driven by two oppositely located supply jets with a time-periodic supply velocity: A numerical analysis using computational fluid dynamics
,”
Indoor Built Environ.
29
(
4
),
603
620
(
2020
).
11.
X.
Tian
and
Z.
Lin
, “
Dynamic modelling of air temperature in breathing zone with stratum ventilation using a pulsating air supply
,”
Build. Environ.
210
,
108697
(
2022
).
12.
D.
Al Assaad
,
K.
Ghali
,
N.
Ghaddar
, and
C.
Habchi
, “
Mixing ventilation coupled with personalized sinusoidal ventilation: Optimal frequency and flow rate for acceptable air quality
,”
Energy Build.
154
,
569
580
(
2017
).
13.
P. V.
Nielsen
, “
Fifty years of CFD for room air distribution
,”
Build. Environ.
91
,
78
90
(
2015
).
14.
R.
Buccolieri
,
J. L.
Santiago
, and
A.
Martilli
, “
CFD modelling: The most useful tool for developing mesoscale urban canopy parameterizations
,”
Build. Simul.
14
(
3
),
407
419
(
2021
).
15.
H.
Wang
and
Z. J.
Zhai
, “
Application of coarse-grid computational fluid dynamics on indoor environment modeling: Optimizing the trade-off between grid resolution and simulation accuracy
,”
HVACR Res.
18
(
5
),
915
933
(
2012
).
16.
H.
Wang
,
Z. J.
Zhai
, and
X.
Liu
, “
Feasibility of utilizing numerical viscosity from coarse grid CFD for fast turbulence modeling of indoor environments
,”
Build. Simul.
7
(
2
),
155
164
(
2014
).
17.
M.
Mortezazadeh
and
L. L.
Wang
, “
Solving city and building microclimates by fast fluid dynamics with large timesteps and coarse meshes
,”
Build. Environ.
179
,
106955
(
2020
).
18.
X.
Xu
,
Z.
Gao
, and
M.
Zhang
, “
A review of simplified numerical approaches for fast urban airflow simulation
,”
Build. Environ.
234
,
110200
(
2023
).
19.
Q.
Shui
,
Z.
Gu
, and
D.
Wang
, “
Three-dimensional large eddy simulation urban neighborhood model with updated building drag coefficient and universal multiscale Smagorinsky model
,”
Phys. Fluids
36
(
7
),
075167
(
2024
).
20.
M.
Mortezazadeh
and
L. L.
Wang
, “
A high‐order backward forward sweep interpolating algorithm for semi‐Lagrangian method
,”
Int. J. Numer. Methods Fluids
84
(
10
),
584
597
(
2017
).
21.
W.
Zuo
,
J.
Hu
, and
Q.
Chen
, “
Improvements in FFD modeling by using different numerical schemes
,”
Numer. Heat Transfer, Part B
58
(
1
),
1
16
(
2010
).
22.
W.
Zuo
and
Q.
Chen
, “
Fast and informative flow simulations in a building by using fast fluid dynamics model on graphics processing unit
,”
Build. Environ.
45
(
3
),
747
757
(
2010
).
23.
K. E.
Niemeyer
and
C.-J.
Sung
, “
Recent progress and challenges in exploiting graphics processors in computational fluid dynamics
,”
J. Supercomput.
67
(
2
),
528
564
(
2014
).
24.
A.
Delgado-Gutiérrez
,
P.
Marzocca
,
D.
Cárdenas-Fuentes
,
O.
Probst
, and
A.
Montesinos-Castellanos
, “
An efficient implementation of the graphics processing unit-accelerated single-step and simplified lattice Boltzmann method for irregular fluid domains
,”
Phys. Fluids
34
(
12
),
125123
(
2022
).
25.
G.
Calzolari
and
W.
Liu
, “
Deep learning to develop zero-equation based turbulence model for CFD simulations of the built environment
,”
Build. Simul.
17
(
3
),
399
414
(
2024
).
26.
J. L.
Guermond
,
P.
Minev
, and
J.
Shen
, “
An overview of projection methods for incompressible flows
,”
Comput. Methods Appl. Mech. Eng.
195
(
44–47
),
6011
6045
(
2006
).
27.
W.
Liu
,
R.
You
,
J.
Zhang
, and
Q.
Chen
, “
Development of a fast fluid dynamics-based adjoint method for the inverse design of indoor environments
,”
J. Build. Perform. Simul.
10
(
3
),
326
343
(
2017
).
28.
A. J.
Chorin
, “
Numerical solution of the Navier-Stokes equations
,”
Math. Comput.
22
(
104
),
745
762
(
1968
).
29.
R.
Témam
, “
Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II)
,”
Arch. Ration. Mech. Anal.
33
(
5
),
377
385
(
1969
).
30.
K.
Goda
, “
A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows
,”
J. Comput. Phys.
30
(
1
),
76
95
(
1979
).
31.
L. J. P.
Timmermans
,
P. D.
Minev
, and
F. N.
Van De Vosse
, “
An approximate projection scheme for incompressible flow using spectral elements
,”
Int. J. Numer. Methods Fluids
22
(
7
),
673
688
(
1996
).
32.
A.
Robert
,
J.
Henderson
, and
C.
Turnbull
, “
An implicit time integration scheme for baroclinic models of the atmosphere
,”
Mon. Weather Rev.
100
(
5
),
329
335
(
1972
).
33.
J.
Stam
, “
Real-time fluid dynamics for games
,” in
Proceedings of the Game Developer Conference
(Game Developers Conference, 2003), Vol.
18
, p.
25
.
34.
W.
Zuo
and
Q.
Chen
, “
Real-time or faster-than-real-time simulation of airflow in buildings
,”
Indoor Air
19
(
1
),
33
44
(
2009
).
35.
W.
Zuo
and
Q. Y.
Chen
, “
Validation of fast fluid dynamics for room airflow
,” in
International Building Performance Simulation Association (IBPSA 2007)
(Tsinghua University Press, 2007), pp.
980
983
.
36.
W.
Zuo
,
M.
Jin
, and
Q.
Chen
, “
Reduction of numerical diffusion in FFD model
,”
Eng. Appl. Comput. Fluid Mech.
6
(
2
),
234
247
(
2012
).
37.
P.
Zhou
,
H.
Wang
,
Y.
Dai
, and
C.
Huang
, “
Performance evaluation of different pressure-velocity decoupling schemes in built environment simulation
,”
Energy Build.
257
,
111763
(
2022
).
38.
P.
Zhou
,
H.
Wang
,
Y.
Dai
,
Y.
Xue
, and
C.
Huang
, “
On the fast fluid dynamics and fractional step methods to predict the coupled indoor temperature and velocity fields
,”
Build. Environ.
229
,
109959
(
2023
).
39.
W.
Liu
,
H.
Sun
,
D.
Lai
,
Y.
Xue
,
A.
Kabanshi
, and
S.
Hu
, “
Performance of fast fluid dynamics with a semi-Lagrangian scheme and an implicit upwind scheme in simulating indoor/outdoor airflow
,”
Build. Environ.
207
,
108477
(
2022
).
40.
P.
Zhou
,
H.
Wang
,
Y.
Dai
, and
C.
Huang
, “
Fast flow simulation study of pulsating ventilation performance on air contaminant removal
,”
Build. Simul.
17
,
1309
(
2024
).
41.
R.
Li
,
Z.
Liu
,
L.
Feng
, and
N.
Gao
, “
Fast fluid dynamics simulation of the airflow distributions in urban residential areas
,”
Energy Build.
255
,
111635
(
2022
).
42.
R.
Li
,
Z.
Liu
,
Y.
Zhao
,
Y.
Wu
,
J.
Niu
,
L. L.
Wang
, and
N.
Gao
, “
Fast fluid dynamics simulation of airflow around a single bluff body under different turbulence models and discretization schemes
,”
Build. Environ.
219
,
109235
(
2022
).
43.
T.
Dai
,
S.
Liu
,
J.
Liu
,
N.
Jiang
,
W.
Liu
, and
Q.
Chen
, “
Evaluation of fast fluid dynamics with different turbulence models for predicting outdoor airflow and pollutant dispersion
,”
Sustainable Cities Soc.
77
,
103583
(
2022
).
44.
R.
Abbasi
,
A.
Ashrafizadeh
, and
A.
Shadaram
, “
A comparative study of finite volume pressure-correction projection methods on co-located grid arrangements
,”
Comput. Fluids
81
,
68
84
(
2013
).
45.
J. L.
Guermond
,
P.
Minev
, and
J.
Shen
, “
Error analysis of pressure-correction schemes for the time-dependent stokes equations with open boundary conditions
,”
SIAM J. Numer. Anal.
43
(
1
),
239
258
(
2005
).
46.
J. H.
Ferziger
,
M.
Perić
, and
R. L.
Street
,
Computational Methods for Fluid Dynamics
(
Springer International Publishing
,
Cham
,
2020
).
47.
C.
Greenshields
,
OpenFOAM v8 User Guide
(
The OpenFOAM Foundation
,
London
,
2020
).
48.
J. D.
Posner
,
C. R.
Buchanan
, and
D.
Dunn-Rankin
, “
Measurement and prediction of indoor air flow in a model room
,”
Energy Build.
35
(
5
),
515
526
(
2003
).
49.
Z. J.
Zhai
,
Z.
Zhang
,
W.
Zhang
, and
Q. Y.
Chen
, “
Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: Part 1—Summary of prevalent turbulence models
,”
HVACR Res.
13
(
6
),
853
870
(
2007
).
50.
Z. F.
Tian
,
J. Y.
Tu
,
G. H.
Yeoh
, and
R. K. K.
Yuen
, “
On the numerical study of contaminant particle concentration in indoor airflow
,”
Build. Environ.
41
(
11
),
1504
1514
(
2006
).
51.
H.
Wang
,
H.
Wang
,
F.
Gao
,
P.
Zhou
, and
Z. J.
Zhai
, “
Literature review on pressure–velocity decoupling algorithms applied to built-environment CFD simulation
,”
Build. Environ.
143
,
671
678
(
2018
).
52.
S.
Zheng
,
Z. J.
Zhai
,
Y.
Wang
,
Y.
Xue
,
L.
Duanmu
, and
W.
Liu
, “
Evaluation and comparison of various fast fluid dynamics modeling methods for predicting airflow around buildings
,”
Build. Simul.
15
(
6
),
1083
1095
(
2022
).
53.
V.
Starikovičius
,
R.
Čiegis
, and
A.
Bugajev
, “
On efficiency analysis of the OpenFOAM-based parallel solver for simulation of heat transfer in and around the electrical power cables
,”
Informatica
27
(
1
),
161
178
(
2016
).
You do not currently have access to this content.