Saltwater intrusion in artificial canals is commonly caused by gravity currents; however, the influence of ship motion on gravity currents remains unclear. This study investigates the behavior of gravity currents influenced by ship motion through laboratory experiments, focusing on fluid dynamics and the mixing process between dense and light fluids under a single-ship passage disturbance. A lock-exchange setup with a ship-model control system was used, where ship velocity was linked to propeller rotation via the apparent advance coefficient. Particle image velocimetry and planar laser-induced fluorescence imaging were used to capture the synchronized data of the velocity and density fields. Three cases with different ship speeds were conducted: 2×, 3×, and 6× the current frontal velocities (uf). Three main stages of flow behavior were observed (approach, compression, and mixing), with the mixing stage further divided into three sub-phases: mixing enhancement, decay, and stratification. The findings revealed that higher ship speeds amplified density oscillations and sustained fluctuation periods, with the ship's wake generating significant turbulence and fluid mixing, particularly in the mixing stage. An exponential power-law decay model was applied to the turbulence intensity, which highlighted an increased stratification over time, ultimately reducing turbulent kinetic energy production. During mixing enhancement, the density change rate and turbulence intensity exhibited a linear relationship, which transitioned to a quadratic function in the decay phase, highlighting the dynamics between mixing and turbulence within the fluid. This study enhances our understanding of the effects of a single disturbance induced by ship motion on gravity currents.

1.
D.
Sher
and
A. W.
Woods
, “
Gravity currents: Entrainment, stratification and self-similarity
,”
J. Fluid Mech.
784
,
130
162
(
2015
).
2.
W. J.
Schmitz
, “
On the interbasin–scale thermohaline circulation
,”
Rev. Geophy.
33
,
151
173
(
1995
).
3.
Y.
Feliks
, “
An analytical model of gravity currents in a stable atmosphere
,”
J. Fluid Mech.
420
,
27
46
(
2000
).
4.
D.
Nof
and
S.
Van Gorder
, “
The propagation of gravity currents along continental shelves
,”
J. Phys. Oceanogr.
18
,
481
491
(
1988
).
5.
H.
Burchard
,
H. M.
Schuttelaars
, and
D. K.
Ralston
, “
Sediment trapping in estuaries
,”
Annu. Rev. Mar. Sci.
10
,
371
395
(
2018
).
6.
Z.
Tao
,
Y.
Chen
,
S.
Pan
,
A.
Chu
,
C.
Xu
,
P.
Yao
, and
S.
Rowely
, “
The influence of wind and waves on saltwater intrusion in the Yangtze Estuary: A numerical modeling study
,”
J. Geophys. Res. Oceans
129
,
e2024JC021076
, https://doi.org/10.1029/2024JC021076 (
2024
).
7.
D. K.
Ralston
,
W. R.
Geyer
, and
J. A.
Lerczak
, “
Structure, variability, and salt flux in a strongly forced salt wedge estuary
,”
J. Geophys. Res.
115
,
2009JC005806
, https://doi.org/10.1029/2009JC005806 (
2010
).
8.
H. H. G.
Savenije
,
Salinity and Tides in Alluvial Estuaries
(
Water Resources Section, Delft University of Technology
,
Delft, The Netherlands
,
2012
).
9.
R. R.
Goswami
and
T. P.
Clement
, “
Laboratory–scale investigation of saltwater intrusion dynamics
,”
Water Resour. Res.
43
,
2006WR005151
, https://doi.org/10.1029/2006WR005151 (
2007
).
10.
H.
Burchard
and
R. D.
Hetland
, “
Quantifying the contributions of tidal straining and gravitational circulation to residual circulation in periodically stratified tidal estuaries
,”
J. Phys. Oceanogr.
40
,
1243
1262
(
2010
).
11.
V.
Lombardi
, “
Gravity currents: Laboratory experiments and numerical simulations
,” PhD thesis (
Roma Tre University
,
Rome
,
2012
).
12.
R. V.
More
and
A. M.
Ardekani
, “
Motion in stratified fluids
,”
Annu. Rev. Fluid Mech.
55
,
157
192
(
2023
).
13.
A.
Dai
and
Y. L.
Huang
, “
The flow within the head of a gravity current
,”
J. Fluid Mech.
997
,
A42
(
2024
).
14.
P.
Mukherjee
and
S.
Balasubramanian
, “
Energetics and mixing efficiency of lock-exchange gravity currents using simultaneous velocity and density fields
,”
Phys. Rev. Fluids
5
,
063802
(
2020
).
15.
Q.
Zhong
,
F.
Hussain
, and
H. J. S.
Fernando
, “
Quantification of turbulent mixing in colliding gravity currents
,”
J. Fluid Mech.
851
,
125
147
(
2018
).
16.
A.
Dai
,
Y. L.
Huang
, and
C. S.
Wu
, “
Energy balances for the collision of gravity currents of equal strengths
,”
J. Fluid Mech.
959
,
A20
(
2023
).
17.
T.
O'Mahoney
,
G.
Brown
,
T. v d
Wekken
,
R.
Burgers
,
O.
Bertrand
,
J.
Hillewaere
,
R.
Garcia
,
R.
Delgado
,
C.
Thorenz
,
X.
Luo
,
B. D.
Maerschalck
, and
F.
Kösters
, “InCom WG Report no 198 - Saltwater intrusion mitigation in inland waterways,” (
General Secretariat of P.I.A.N.C
,
2021
).
18.
I. Y.
Georgiou
, “
Three-dimensional hydrodynamic modeling of saltwater intrusion and circulation in Lake Pontchartrain
,” PhD thesis (
University of New Orleans
,
New Orleans, LA
,
2002
).
19.
S. W.
Andrews
,
E. S.
Gross
, and
P. H.
Hutton
, “
Modeling salt intrusion in the San Francisco estuary prior to anthropogenic influence
,”
Cont. Shelf Res.
146
,
58
81
(
2017
).
20.
Y.
Xiao
,
D.
Li
,
S.
Yang
,
J.
Hu
, and
W.
Li
, “
Response of salt water intrusion to a huge navigation project construction in the Qinjiang River Estuary, Southeast China
,”
J. Coast. Conserv.
27
,
69
(
2023
).
21.
A.
Abdoulhalik
,
A.
Ahmed
, and
G. A.
Hamill
, “
A new physical barrier system for seawater intrusion control
,”
J. Hydrol.
549
,
416
427
(
2017
).
22.
A. M.
Oldeman
,
S.
Kamath
,
M. V.
Masterov
,
T. S. D.
O'Mahoney
,
G. J. F.
van Heijst
,
J. A. M.
Kuipers
, and
K. A.
Buist
, “
Numerical study of bubble screens for mitigating salt intrusion in sea locks
,”
Int. J. Multiphas Flow
129
,
103321
(
2020
).
23.
I. A.
Hannoun
,
H. J. S.
Fernando
, and
E. J.
List
, “
Turbulence structure near a sharp density interface
,”
J. Fluid Mech.
189
,
189
209
(
1988
).
24.
S.
Balasubramanian
and
Q.
Zhong
, “
Entrainment and mixing in lock-exchange gravity currents using simultaneous velocity-density measurements
,”
Phys. Fluids
30
,
056601
(
2018
).
25.
E. J.
Strang
and
H. J. S.
Fernando
, “
Entrainment and mixing in stratified shear flows
,”
J. Fluid Mech.
428
,
349
386
(
2001
).
26.
D.
Xu
and
J.
Chen
, “
Experimental study of stratified jet by simultaneous measurements of velocity and density fields
,”
Exp. Fluids
53
,
145
162
(
2012
).
27.
T. B.
Benjamin
, “
Gravity currents and related phenomena
,”
J. Fluid Mech.
31
,
209
248
(
1968
).
28.
Chongqing Jiaotong University
, “
Pinglu Canal engineering feasibility study report - study on the impact of seawater intrusion at Qingnian Reservoir (in Chinese)
,” (
2022
).
29.
Chongqing Jiaotong University
, “
General report on the study of engineering measures and effectiveness for mitigation of saltwater intrusion at the Pinglu Canal Qingnian navigation complex (in Chinese)
,” (
2023
).
30.
H. E.
Huppert
and
J. E.
Simpson
, “
The slumping of gravity currents
,”
J. Fluid Mech.
99
,
785
799
(
1980
).
31.
J. O.
Shin
,
S. B.
Dalziel
, and
P. F.
Linden
, “
Gravity currents produced by lock exchange
,”
J. Fluid Mech.
521
,
1
34
(
2004
).
32.
V. K.
Birman
,
B. A.
Battandier
,
E.
Meiburg
, and
P. F.
Linden
, “
Lock-exchange flows in sloping channels
,”
J. Fluid Mech.
577
,
53
77
(
2007
).
33.
M. I.
Cantero
,
J. R.
Lee
,
S.
Balachandar
, and
M. H.
Garcia
, “
On the front velocity of gravity currents
,”
J. Fluid Mech.
586
,
1
39
(
2007
).
34.
T.
Bonometti
, “
Book review: An introduction to gravity currents and intrusions, Ungarish, M. (2009). CRC Press, 489pp
,”
Int. J. Multiphase Flow
37
,
1254
1255
(
2011
).
35.
X.
Yin
,
Y.
He
,
S.
Lu
,
C.
Gao
, and
Q.
Liu
, “
Experimental study on front spreading of lock-exchange gravity current with long lock length
,”
J. Eng. Mech.
146
,
04019113
(
2020
).
36.
K.
Strom
,
A. N.
Papanicolaou
,
N.
Evangelopoulos
, and
M.
Odeh
, “
Microforms in gravel bed rivers: Formation, disintegration, and effects on bedload transport
,”
J. Hydraul. Eng.
130
,
554
567
(
2004
).
37.
Y.
Duan
,
P.
Zhang
,
Q.
Zhong
,
D.
Zhu
, and
D.
Li
, “
Characteristics wall-attached motions open channel flows
,”
Phys. Fluids
32
,
055110
(
2020
).
38.
S.
Cordier
,
K.
Hasegawa
,
M.
Hirano
,
J. B.
Petersen
,
R.
Key-Pyo
,
P.
Trägårdh
,
M.
Triantafyllou
,
M.
Vantorre
, and
Z.
Zou
, “
The manoeuvring committee: Final report and recommendations to the 23rd ITTC
,” in
Proceedings of the 23rd ITTC
(
2002
), Vol.
I
.
39.
Z.-M.
Yuan
,
X.
Zhang
,
C.-Y.
Ji
,
L.
Jia
,
H.
Wang
, and
A.
Incecik
, “
Side wall effects on ship model testing in a towing tank
,”
Ocean Eng.
147
,
447
457
(
2018
).
40.
F.
Scarano
, “
Iterative image deformation methods in PIV
,”
Meas. Sci. Technol.
13
,
R1
R19
(
2002
).
41.
J. A.
Bourgeois
,
P.
Sattari
, and
R. J.
Martinuzzi
, “
Alternating half-loop shedding in the turbulent wake of a finite surface-mounted square cylinder with a thin boundary layer
,”
Phys. Fluids
23
,
095101
(
2011
).
42.
Q.
Zhong
,
F.
Hussain
, and
H. J. S.
Fernando
, “
Phase aligned ensemble averaging for environmental flow studies
,”
Environ. Fluid Mech.
20
,
1357
1377
(
2020
).
43.
A. S.
Nebuchinov
,
Y. A.
Lozhkin
,
A. V.
Bilsky
, and
D. M.
Markovich
, “
Combination of PIV and PLIF methods to study convective heat transfer in an impinging jet
,”
Exp. Therm. Fluid Sci.
80
,
139
146
(
2017
).
44.
P.
Sarathi
,
R.
Gurka
,
G. A.
Kopp
, and
P. J.
Sullivan
, “
A calibration scheme for quantitative concentration measurements using simultaneous PIV and PLIF
,”
Exp. Fluids
52
,
247
259
(
2012
).
45.
M.
Felli
,
M.
Falchi
, and
G.
Dubbioso
, “
Tomographic-PIV survey of the near-field hydrodynamic and hydroacoustic characteristics of a marine propeller
,”
J. Ship Res.
59
,
201
208
(
2015
).
46.
J.
Seo
,
D. M.
Seol
,
B.
Han
, and
S. H.
Rhee
, “
Turbulent wake field reconstruction of VLCC models using two-dimensional towed underwater PIV measurements
,”
Ocean Eng.
118
,
28
40
(
2016
).
47.
B. W.
Han
,
J.
Seo
,
S. J.
Lee
,
D. M.
Seol
, and
S. H.
Rhee
, “
Uncertainty assessment for a towed underwater stereo PIV system by uniform flow measurement
,”
Int. J. Nav. Archit. Ocean Eng.
10
,
596
608
(
2018
).
48.
S. C.
Go
,
J.
Seo
,
J.
Park
, and
S. H.
Rhee
, “
Towed underwater PIV measurement of propeller wake in self-propelled condition
,”
Exp. Fluids
60
,
184
(
2019
).
49.
R. M.
Dorrell
,
J.
Peakall
,
C.
Burns
, and
G. M.
Keevil
, “
A novel mixing mechanism in sinuous seafloor channels: Implications for submarine channel evolution
,”
Geomorphology
303
,
1
12
(
2018
).
50.
R. J.
Adrian
, “
Particle-imaging techniques for experimental fluid mechanics
,”
Annu. Rev. Fluid Mech.
23
,
261
304
(
1991
).
51.
J.
Westerweel
,
G. E.
Elsinga
, and
R. J.
Adrian
, “
Particle image velocimetry for complex and turbulent flows
,”
Annu. Rev. Fluid Mech.
45
,
409
436
(
2013
).
You do not currently have access to this content.