An optimization study was conducted with the objective of enhancing the performance of a prevalent shell-and-tube heat exchanger model by modifying the baffle angles. The initial step was to verify the turbulence model results with numerical studies and analytical approaches documented in the literature. Subsequently, an investigation was conducted to address the contributions identified in the literature by determining the optimal angle for a shell-and-tube heat exchanger with six baffles. In the extant literature, the 36% baffle cut case, which is typically observed to provide the optimal heat transfer result, was selected for further analysis. A genetic algorithm optimization model embedded in a program was employed to evaluate the heat transfer and pressure drop jointly, thereby determining the optimal angles for all baffles. According to the performance evaluation criteria that considered both heat and flow results, the optimal angles were found to be 315°, 195°, 80°, 340°, 250°, and 95° from the first to the last baffle, respectively. Additionally, a comparison was conducted between the cross-arrangement baffle and the optimized baffle, which demonstrated superior performance by 5.5% and 19.5%, respectively, contingent on the increasing flow rate. Moreover, the novel configuration enabled enhanced mixing of the flow, which exhibited periodic movement in the staggered baffle configuration within the shell. This resulted in a notable enhancement of the heat transfer process.

1.
M.
Bouselsal
,
F.
Mebarek-Oudina
,
N.
Biswas
, and
A. A. I.
Ismail
, “
Heat transfer enhancement using Al2O3-MWCNT hybrid-nanofluid inside a tube/shell heat exchanger with different tube shapes
,”
Micromachines
14
(
5
),
1072
(
2023
).
2.
A.
Khan
,
I.
Shah
,
W.
Gul
,
T. A.
Khan
,
Y.
Ali
, and
S. A.
Masood
, “
Numerical and experimental analysis of shell and tube heat exchanger with round and hexagonal tubes
,”
Energies
16
(
2
),
880
(
2023
).
3.
S. E.
Rad
,
H.
Afshin
, and
B.
Farhanieh
, “
Heat transfer enhancement in shell-and-tube heat exchangers using porous media
,”
Heat Transfer Eng.
36
(
3
),
262
277
(
2015
).
4.
Z.
Said
,
S. M. A.
Rahman
,
M. E. H.
Assad
, and
A. H.
Alami
, “
Heat transfer enhancement and life cycle analysis of a shell-and-tube heat exchanger using stable CuO/water nanofluid
,”
Sustainable Energy Technol. Assess.
31
,
306
317
(
2019
).
5.
N.
Jamshidi
,
M.
Farhadi
,
D. D.
Ganji
, and
K.
Sedighi
, “
Experimental analysis of heat transfer enhancement in shell and helical tube heat exchangers
,”
Appl. Therm. Eng.
51
(
1–2
),
644
652
(
2013
).
6.
A. D.
Tuncer
,
A.
Sözen
,
A.
Khanlari
,
E. Y.
Gürbüz
, and
H. İ.
Variyenli
, “
Analysis of thermal performance of an improved shell and helically coiled heat exchanger
,”
Appl. Therm. Eng.
184
,
116272
(
2021
).
7.
E. M.
El-Said
and
M. M.
Abou Al-Sood
, “
Shell and tube heat exchanger with new segmental baffles configurations: A comparative experimental investigation
,”
Appl. Therm. Eng.
150
,
803
810
(
2019
).
8.
E. M.
El-Said
,
A. H.
Elsheikh
, and
H. R.
El-Tahan
, “
Effect of curved segmental baffle on a shell and tube heat exchanger thermohydraulic performance: Numerical investigation
,”
Int. J. Therm. Sci.
165
,
106922
(
2021
).
9.
A. S.
Ambekar
,
R.
Sivakumar
,
N.
Anantharaman
, and
M.
Vivekenandan
, “
CFD simulation study of shell and tube heat exchangers with different baffle segment configurations
,”
Appl. Therm. Eng.
108
,
999
1007
(
2016
).
10.
A. A. A.
Arani
and
H.
Uosofvand
, “
Double-pass shell-and-tube heat exchanger performance enhancement with new combined baffle and elliptical tube bundle arrangement
,”
Int. J. Therm. Sci.
167
,
106999
(
2021
).
11.
H. R.
Abbasi
,
E. S.
Sedeh
,
H.
Pourrahmani
, and
M. H.
Mohammadi
, “
Shape optimization of segmental porous baffles for enhanced thermo-hydraulic performance of shell-and-tube heat exchanger
,”
Appl. Therm. Eng.
180
,
115835
(
2020
).
12.
A. A. A.
Arani
and
R.
Moradi
, “
Shell and tube heat exchanger optimization using new baffle and tube configuration
,”
Appl. Therm. Eng.
157
,
113736
(
2019
).
13.
M. G.
Yehia
,
A. A.
Attia
,
O. E.
Abdelatif
, and
E. E.
Khalil
, “
Heat transfer and friction characteristics of shell and tube heat exchanger with multi-inserted swirl vanes
,”
Appl. Therm. Eng.
102
,
1481
1491
(
2016
).
14.
X.
Cao
,
T.
Du
,
Z.
Liu
,
H.
Zhai
, and
Z.
Duan
, “
Experimental and numerical investigation on heat transfer and fluid flow performance of sextant helical baffle heat exchangers
,”
Int. J. Heat Mass Transfer
142
,
118437
(
2019
).
15.
H.
Ma
,
D. E.
Oztekin
,
S.
Bayraktar
,
S.
Yayla
, and
A.
Oztekin
, “
Computational fluid dynamics and heat transfer analysis for a novel heat exchanger
,”
J. Heat Transfer
137
(
5
),
051801
(
2015
).
16.
E.
Ozden
and
I.
Tari
, “
Shell side CFD analysis of a small shell-and-tube heat exchanger
,”
Energy Convers. Manage.
51
(
5
),
1004
1014
(
2010
).
17.
X.
Wang
,
N.
Zheng
,
Z.
Liu
, and
W.
Liu
, “
Numerical analysis and optimization study on shell-side performances of a shell and tube heat exchanger with staggered baffles
,”
Int. J. Heat Mass Transfer
124
,
247
259
(
2018
).
18.
J. F.
Yang
,
M.
Zeng
, and
Q. W.
Wang
, “
Numerical investigation on shell-side performances of combined parallel and serial two shell-pass shell-and-tube heat exchangers with continuous helical baffles
,”
Appl. Energy
139
,
163
174
(
2015
).
19.
M.
Mellal
,
R.
Benzeguir
,
D.
Sahel
, and
H.
Ameur
, “
Hydro-thermal shell-side performance evaluation of a shell and tube heat exchanger under different baffle arrangement and orientation
,”
Int. J. Therm. Sci.
121
,
138
149
(
2017
).
20.
U.
Roy
and
M.
Majumder
, “
Economic optimization and energy analysis in shell and tube heat exchanger by meta-heuristic approach
,”
Vacuum
166
,
413
418
(
2019
).
21.
J.
Jafari-Asl
,
O. D. L.
Montaño
,
S.
Mirjalili
, and
M. G.
Faes
, “
A meta-heuristic approach for reliability-based design optimization of shell-and-tube heat exchangers
,”
Appl. Therm. Eng.
248
,
123161
(
2024
).
22.
M.
Fesanghary
,
E.
Damangir
, and
I.
Soleimani
, “
Design optimization of shell and tube heat exchangers using global sensitivity analysis and harmony search algorithm
,”
Appl. Therm. Eng.
29
(
5–6
),
1026
1031
(
2009
).
23.
H.
Kim
,
J.
Seo
, and
Y. A.
Hassan
, “
Surrogate-based multi-objective design optimization of tree-shaped fins with uniform branch end distribution for latent heat thermal energy storage
,”
Phys. Fluids
36
(
7
),
077160
(
2024
).
24.
D. Q.
Kern
,
Process Heat Transfer, Mc Graw-Hi
(
Book Company
,
New York
,
1965
).
25.
K. J.
Bell
, “
Delaware method for shell side design
,” in
Heat Exchangers: Thermal–Hydraulic Fundamentals and Design
, edited by
S.
Kakac
,
A. E.
Bergles
, and
F.
Mayinger
, editors (
Hemisphere
,
New York
,
1981
), pp.
581
618
.
26.
D. K.
Mohanty
, “
Gravitational search algorithm for economic optimization design of a shell and tube heat exchanger
,”
Appl. Therm. Eng.
107
,
184
193
(
2016
).
27.
Y.
Li
,
X.
Jiang
,
X.
Huang
,
J.
Jia
, and
J.
Tong
, “
Optimization of high-pressure shell-and-tube heat exchanger for syngas cooling in an IGCC
,”
Int. J. Heat Mass Transfer
53
(
21–22
),
4543
4551
(
2010
).
28.
A. L.
Costa
and
E. M.
Queiroz
, “
Design optimization of shell-and-tube heat exchangers
,”
Appl. Therm. Eng.
28
(
14–15
),
1798
1805
(
2008
).
29.
S.
Sanaye
and
H.
Hajabdollahi
, “
Multi-objective optimization of shell and tube heat exchangers
,”
Appl. Therm. Eng.
30
(
14–15
),
1937
1945
(
2010
).
30.
M.
Mirzaei
,
H.
Hajabdollahi
, and
H.
Fadakar
, “
Multi-objective optimization of shell-and-tube heat exchanger by constructal theory
,”
Appl. Therm. Eng.
125
,
9
19
(
2017
).
31.
S.
Fettaka
,
J.
Thibault
, and
Y.
Gupta
, “
Design of shell-and-tube heat exchangers using multiobjective optimization
,”
Int. J. Heat Mass Transfer
60
,
343
354
(
2013
).
32.
S.
Ali
,
T.
Dbouk
,
M.
Khaled
,
J.
Faraj
, and
D.
Drikakis
, “
Morphing optimization of flow and heat transfer in concentric tube heat exchangers
,”
Phys. Fluids
35
(
9
),
095127
(
2023
).
33.
T. H.
Shih
,
J.
Zhu
, and
J. L.
Lumley
, “
A new Reynolds stress algebraic equation model
,”
Comput. Methods Appl. Mech. Eng.
125
(
1–4
),
287
302
(
1995
).
34.
T. H.
Shih
,
W. W.
Liou
,
A.
Shabbir
,
Z.
Yang
, and
J.
Zhu
, “
A new k-ϵ eddy viscosity model for high reynolds number turbulent flows
,”
Computers fluids
24
(
3
),
227
238
(
1995
).
35.
F. P.
Incropera
,
D. P.
DeWitt
,
T. L.
Bergman
, and
A. S.
Lavine
,
Fundamentals of Heat and Mass Transfer
(
John Wiley& Sons. Inc
.,
New York
,
2007
).
36.
W. M.
Kays
and
A. L.
London
,
Compact Heat Exchangers
(
McGraw-Hill
,
1984
).
37.
R. K.
Shah
and
D. P.
Sekulic
,
Fundamentals of Heat Exchanger Design
(
John Wiley & Sons
,
2003
).
38.
S.
Emani
,
M.
Ramasamy
, and
K. Z. K.
Shaari
, “
Discrete phase-cfd simulations of asphaltenes particles deposition from crude oil in shell and tube heat exchangers
,”
Appl. Therm. Eng.
149
,
105
118
(
2019
).
39.
J.
Yang
, “
Computational fluid dynamics studies on the induction period of crude oil fouling in a heat exchanger tube
,”
Int. J. Heat Mass Transfer
159
,
120129
(
2020
).
40.
Ansys
.
Ansys Fluent Theory Guide
(
ANSYS, Inc
.,
2023
).
41.
V.
Ghazanfari
,
A.
Taheri
,
Y.
Amini
, and
F.
Mansourzade
, “
Enhancing heat transfer in a heat exchanger: CFD study of twisted tube and nanofluid (Al2O3, Cu, CuO, and TiO2) effects
,”
Case Stud. Therm. Eng.
53
,
103864
(
2024
).
42.
M. H.
Mohammadi
,
H. R.
Abbasi
,
A.
Yavarinasab
, and
H.
Pourrahmani
, “
Thermal optimization of shell and tube heat exchanger using porous baffles
,”
Appl. Therm. Eng.
170
,
115005
(
2020
).
43.
W.
Liu
,
Z.
Liu
, and
L.
Ma
, “
Application of a multi-field synergy principle in the performance evaluation of convective heat transfer enhancement in a tube
,”
Chin. Sci. Bull.
57
,
1600
1607
(
2012
).
44.
J.
Yang
and
W.
Liu
, “
Numerical investigation on a novel shell-and-tube heat exchanger with plate baffles and experimental validation
,”
Energy Convers. Manage.
101
,
689
696
(
2015
).
45.
X.
Gu
,
Y.
Luo
,
X.
Xiong
,
K.
Wang
, and
Y.
Wang
, “
Numerical and experimental investigation of the heat exchanger with trapezoidal baffle
,”
Int. J. Heat Mass Transfer
127
,
598
606
(
2018
).
46.
S.
Eiamsa-ard
and
P.
Promvonge
, “
Experimental investigation of heat transfer and friction characteristics in a circular tube fitted with V-nozzle turbulators
,”
Int. Commun. Heat Mass Transfer
33
(
5
),
591
600
(
2006
).
47.
P.
Promvonge
,
N.
Koolnapadol
,
M.
Pimsarn
, and
C.
Thianpong
, “
Thermal performance enhancement in a heat exchanger tube fitted with inclined vortex rings
,”
Appl. Therm. Eng.
62
(
1
),
285
292
(
2014
).
48.
J. F.
Zhang
,
B.
Li
,
W. J.
Huang
,
Y. G.
Lei
,
Y. L.
He
, and
W. Q.
Tao
, “
Experimental performance comparison of shell-side heat transfer for shell-and-tube heat exchangers with middle-overlapped helical baffles and segmental baffles
,”
Chem. Eng. Sci.
64
(
8
),
1643
1653
(
2009
).
49.
U.
Ernst
,
Heat Exchanger Design Handbook
(
Hemisphere Publishing Corporation
,
Washington, DC
,
1983
), Vol.
3
.
You do not currently have access to this content.