The streamlined box girder is widely used in long-span bridges, yet the impact of Reynolds number effects on its aerodynamic characteristics is still not fully understood. This study focused on the streamlined box girder of the Ningbo Xiangshan Harbor Bridge, using a 1:15 scale model tested in the 8 × 6 m wind tunnel in Mianyang, China, under various angles of attack and high-Reynolds numbers (up to Re = 1.09 × 106). The findings indicate that the mean aerodynamic force coefficient exhibits significant Reynolds number effects at positive angles of attack, with maximum variations reaching 84.00%. The fluctuating force coefficient shows a trend of initially decreasing and then increasing with the increase in Reynolds number across all angles of attack. As the angle of attack increases from 0° to 8°, the distribution of mean and fluctuating wind pressure changes significantly. The mean wind pressure coefficient on the upper surface of the upstream nozzle decreases significantly with increasing Reynolds number at positive angles, with the rate of decrease increasing with the angle of attack and reaching a maximum of 0.81, which explains the Reynolds number effect on the mean aerodynamic force coefficient. At the +5° angle of attack, the fluctuating wind pressure distribution decreases and then increases with Reynolds number; at other angles, it generally decreases with increasing Reynolds number. The wind pressure correlation between circumferential measurement points increases with Reynolds number. The spanwise correlations of the lift and moment coefficients exhibit the same trend, with maximum increases of 0.60 and 0.69, respectively.

1.
A.
Roshko
, “
Perspectives on bluff body aerodynamics
,”
J. Wind Eng. Ind. Aerodyn.
49
(
1–3
),
79
100
(
1993
).
2.
C. H. K.
Williamson
, “
Vortex dynamics in the cylinder wake
,”
Annu. Rev. Fluid Mech.
28
(
1
),
477
539
(
1996
).
3.
C.
Norberg
, “
Fluctuating lift on a circular cylinder: Review and new measurements
,”
J. Fluids Struct.
17
(
1
),
57
96
(
2003
).
4.
M. M.
Zdravkovich
and
P. W.
Bearman
, “
Flow around circular cylinders—Volume 1: Fundamentals
,”
J. Fluids Eng.
120
(
1
),
216
216
(
1998
).
5.
G. L.
Larose
and
A.
D'Auteuil
, “
On the Reynolds number sensitivity of the aerodynamics of bluff bodies with sharp edges
,”
J. Wind Eng. Ind. Aerodyn.
94
(
5
),
365
376
(
2006
).
6.
C.
Barré
and
G.
Barnaud
, “
High Reynolds number simulation techniques and their application to shaped structures model test
,”
J. Wind Eng. Ind. Aerodyn.
57
(
2–3
),
145
157
(
1995
).
7.
G.
Schewe
and
A.
Larsen
, “
Reynolds number effects in the flow around a bluff bridge deck cross section
,”
J. Wind Eng. Ind. Aerodyn.
74–76
(
6
),
829
838
(
1998
).
8.
Y.
Ran
,
W.-L.
Chen
,
Y.
Jin
,
H.
Li
, and
D.
Gao
, “
Reynolds number sensitivity of the vortex dynamics around a long-span rail-cum-road bridge girder with three separated boxes
,”
J. Wind Eng. Ind. Aerodyn.
250
,
105785
(
2024
).
9.
A.
Larsen
,
M.
Savage
,
A.
Lafreniere
,
M.
Hui
, and
S.
Larsen
, “
Investigation of vortex response of a twin box bridge section at high and low Reynolds numbers
,”
J. Wind Eng. Ind. Aerodyn.
96
(
6–7
),
934
944
(
2008
).
10.
M.
Asghari Mooneghi
,
P.
Irwin
, and
A.
Gan Chowdhury
, “
Large-scale testing on wind uplift of roof pavers
,”
J. Wind Eng. Ind. Aerodyn.
128
,
22
36
(
2014
).
11.
K.
Matsuda
,
K. R.
Cooper
,
H.
Tanaka
,
M.
Tokushige
, and
T.
Iwasaki
, “
An investigation of Reynolds number effects on the steady and unsteady aerodynamic forces on a 1:10 scale bridge deck section model
,”
J. Wind Eng. Ind. Aerodyn.
89
(
7–8
),
619
632
(
2001
).
12.
G.
Schewe
, “
Reynolds-number effects in flow around more-or-less bluff bodies
,”
J. Wind Eng. Ind. Aerodyn.
89
(
14–15
),
1267
1289
(
2001
).
13.
K.
Matsuda
,
M.
Tokushige
, and
T.
Iwasaki
, “
Reynolds number eff. steady unsteady aerodynamic forces acting bridge deck sections long-span suspension bridge
,”
IHI Eng. Rev.
40
(
1
),
15
(
2007
).
14.
S.
Lee
,
S.
Kwon
, and
J.
Yoon
, “
Reynolds number sensitivity to aerodynamic forces of twin box bridge girder
,”
J. Wind Eng. Ind. Aerodyn.
127
,
59
68
(
2014
).
15.
R.
Kargarmoakhar
,
A.
Chowdhury
, and
P.
Irwin
, “
Reynolds number effects on twin box girder long span bridge aerodynamics
,”
Wind Struct.
20
(
2
),
327
347
(
2015
).
16.
H.
Li
,
S.
Laima
, and
H.
Jing
, “
Reynolds number effects on aerodynamic characteristics and vortex-induced vibration of a twin-box girder
,”
J. Fluids Struct.
50
,
358
375
(
2014
).
17.
S.
Laima
,
C.
Jiang
,
H.
Li
,
W.
Chen
, and
J.
Ou
, “
A numerical investigation of Reynolds number sensitivity of flow characteristics around a twin-box girder
,”
J. Wind Eng. Ind. Aerodyn.
172
,
298
316
(
2018
).
18.
Z.
Zhu
, “
LES prediction of aerodynamics and coherence analysis of fluctuating pressure on box girders of long-span bridges
,”
Comput. Fluids
110
,
169
180
(
2015
).
19.
H.
Li
,
L.
Zhang
,
B.
Wu
, and
Z.
Xiao
, “
Effects of streamwise sinusoidal flow on the aerodynamic characteristics of a box girder
,”
Appl. Sci.-Basel
12
(
11
),
5341
(
2022
).
20.
X.
He
,
X.
Kang
,
L.
Yan
,
R.
Flay
,
P.
Ren
, and
T.
Wu
, “
Numerical investigation of flow structures and aerodynamic interference around stationary parallel box girders
,”
J. Wind Eng. Ind. Aerodyn.
215
,
104610
(
2021
).
21.
X.
He
,
H.
Li
,
H.
Wang
,
D.
Fang
, and
M.
Liu
, “
Effects of geometrical parameters on the aerodynamic characteristics of a streamlined flat box girder
,”
J. Wind Eng. Ind. Aerodyn.
170
,
56
67
(
2017
).
22.
G.
Chen
and
W.
Chen
, “
Experimental investigation and validation on suppressing the unsteady aerodynamic force and flow structure of single box girder by trailing edge jets
,”
Appl. Sci.-Basel
12
(
3
),
967
(
2022
).
23.
N. J.
Cherry
,
R.
Hillier
, and
M. E. M. P.
Latour
, “
Unsteady measurements in a separated and reattaching flow
,”
J. Fluid Mech.
144
,
13
46
(
1984
).
24.
S.
Chun
,
Y. Z.
Liu
, and
H. J.
Sung
, “
Wall pressure fluctuations of a turbulent separated and reattaching flow affected by an unsteady wake
,”
Exp. Fluids
37
(
4
),
531
546
(
2004
).
25.
Y. Z.
Liu
,
W.
Kang
, and
H. J.
Sung
, “
Assessment of the organization of a turbulent separated and reattaching flow by measuring wall pressure fluctuations
,”
Exp. Fluids
38
(
4
),
485
493
(
2005
).
26.
B.
Wu
,
S.
Li
,
K.
Li
, and
L.
Zhang
, “
Numerical and experimental studies on the aerodynamics of a 5:1 rectangular cylinder at angles of attack
,”
J. Wind Eng. Ind. Aerodyn.
199
,
104097
(
2020
).
27.
A.
Guissart
,
T.
Andrianne
,
G.
Dimitriadis
, and
V. E.
Terrapon
, “
Numerical and experimental study of the flow around a 4:1 rectangular cylinder at moderate Reynolds number
,”
J. Wind Eng. Ind. Aerodyn.
189
,
289
303
(
2019
).
28.
D. K.
Tafti
and
S. P.
Vanka
, “
A numerical study of flow separation and reattachment on a blunt plate
,”
Phys. Fluids A: Fluid Dyn.
3
(
7
),
1749
1759
(
1991
).
29.
R. H.
Scanlan
, “
State-of-the-art methods for calculating flutter, vortex-induced, and buffeting response of bridge structures
,”
Report No. FHWA-RD-80-050
,
Department of Transportation, Federal Highway Administration, Office of Research
,
USA
(
1981
).
30.
I.
Goswami
,
R. H.
Scanlan
, and
N. P.
Jones
, “
Vortex shedding from circular cylinders: Experimental data and a new model
,”
J. Wind Eng. Ind. Aerodyn.
41
(
1–3
),
763
774
(
1992
).
31.
R. H.
Wilkinson
, “
Part II: Spanwise correlation and loading
,”
Aeronaut. Q.
32
(
2
),
111
125
(
1981
).
32.
Y.
Sun
,
M.
Li
,
M.
Li
, and
H.
Liao
, “
Spanwise correlation of vortex-induced forces on typical bluff bodies
,”
J. Wind Eng. Ind. Aerodyn.
189
,
186
197
(
2019
).
33.
Y.
Sun
,
M.
Li
, and
H.
Liao
, “
Nonlinear approach of vortex-induced vibration for line-like structures
,”
J. Wind Eng. Ind. Aerodyn.
124
,
1
6
(
2014
).
34.
Y.
Sun
,
M.
Li
, and
H.
Liao
, “
Investigation on vortex-induced vibration of a suspension bridge using section and full aeroelastic wind tunnel tests
,”
Wind Struct.
17
(
6
),
565
587
(
2013
).
You do not currently have access to this content.