This experimental study investigates a flexible circular cylinder's flow-induced vibrations (FIV) with an attached flexible splitter plate. The system's dynamic response was analyzed for three splitter plate widths: 1D, 2D, and 3D, where D is the cylinder's diameter, and compared to a bare cylinder. At low reduced velocities, where the bare cylinder exhibited oscillations in its first two bending modes, the presence of the splitter plate resulted in up to a 70% reduction in oscillation amplitudes. At higher reduced velocities, the oscillation amplitude for a 1D splitter plate remained below that of the bare cylinder. In contrast, the amplitudes increased monotonically for 2D and 3D splitter plates, reaching up to three and four times the amplitudes of the bare cylinder, respectively. Multi-frequency oscillations were observed for wider splitter plates. Flow field analysis, incorporating both quantitative and qualitative methods, along with proper orthogonal decomposition of the flow field, identified two distinct FIV response types: the flexible cylinder experienced galloping type response for splitter plate widths of 1D and 2D, and vortex-induced vibration for the 3D splitter plate and the bare cylinder.

1.
F. J.
Huera-Huarte
, “
On splitter plate coverage for suppression of vortex-induced vibrations of flexible cylinders
,”
Appl. Ocean Res.
48
,
244
249
(
2014
).
2.
K.
Venkatraman
and
S.
Narayanan
, “
Active control of flow-induced vibration
,”
J. Sound Vib.
162
,
43
55
(
1993
).
3.
W.-L.
Chen
,
D.-B.
Xin
,
F.
Xu
,
H.
Li
,
J.-P.
Ou
, and
H.
Hu
, “
Suppression of vortex-induced vibration of a circular cylinder using suction-based flow control
,”
J. Fluids Struct.
42
,
25
39
(
2013
).
4.
R. A.
Kumar
,
C.-H.
Sohn
, and
B. H.
Gowda
, “
Passive control of vortex-induced vibrations: An overview
,”
Recent Pat. Mech. Eng.
1
,
1
11
(
2008
).
5.
J.
Wu
,
Y. L.
Qiu
,
C.
Shu
, and
N.
Zhao
, “
Flow control of a circular cylinder by using an attached flexible filament
,”
Phys. Fluids
26
,
103601
(
2014
).
6.
Y.
Wu
,
F.-S.
Lien
,
E.
Yee
, and
G.
Chen
, “
Numerical investigation of flow-induced vibration for cylinder-plate assembly at low Reynolds number
,”
Fluids
8
,
118
(
2023
).
7.
S.
Liang
,
J.
Wang
, and
Z.
Hu
, “
VIV and galloping response of a circular cylinder with rigid detached splitter plates
,”
Ocean Eng.
162
,
176
186
(
2018
).
8.
G. R.
Assi
and
P. W.
Bearman
, “
Transverse galloping of circular cylinders fitted with solid and slotted splitter plates
,”
J. Fluids Struct.
54
,
263
280
(
2015
).
9.
E.
Wang
,
S.
Zhao
,
W.
Xu
,
Q.
Xiao
, and
B.
Li
, “
Effect of splitter plate length on FIV of circular cylinder
,”
Int. J. Mech. Sci.
254
,
108413
(
2023
).
10.
G. R.
Assi
,
P. W.
Bearman
, and
N.
Kitney
, “
Low drag solutions for suppressing vortex-induced vibration of circular cylinders
,”
J. Fluids Struct.
25
,
666
675
(
2009
).
11.
T. R.
Sahu
,
M.
Furquan
, and
S.
Mittal
, “
Numerical study of flow-induced vibration of a circular cylinder with attached flexible splitter plate at low Re
,”
J. Fluid Mech.
880
,
551
593
(
2019
).
12.
Y.
Sun
,
J.
Wang
,
D.
Fan
,
H.
Zheng
, and
Z.
Hu
, “
The roles of rigid splitter plates in flow-induced vibration of a circular cylinder
,”
Phys. Fluids
34
,
114114
(
2022
).
13.
S.
Liang
,
J.
Wang
,
B.
Xu
,
W.
Wu
, and
K.
Lin
, “
Vortex-induced vibration and structure instability for a circular cylinder with flexible splitter plates
,”
J. Wind Eng. Ind Aerodyn.
174
,
200
209
(
2018
).
14.
S. A.
Manjunathan
and
I.
Borazjani
, “
Flow-induced vibration of a circular cylinder with an attached elastic plate of high aspect ratio
,”
Phys. Fluids
34
,
113606
(
2022
).
15.
P.
Shen
,
W.
Zhao
,
H.
Zhang
,
Z.
Wang
,
H.
Yang
, and
Y.
Wei
, “
Force and vortex shedding characteristics of a circular cylinder with flexible splitter plates
,”
Exp. Therm. Fluid Sci.
154
,
111150
(
2024
).
16.
J.
Zhou
,
X.
Qiu
,
J.
Li
,
B.
Wang
,
Q.
Zhou
, and
Y.
Liu
, “
The experimental investigation on wake dynamics of flow around a circular cylinder with the splitter plate
,”
J. Fluids Struct.
127
,
104130
(
2024
).
17.
M. P.
Paidoussis
,
Fluid-Structure Interactions: Slender Structures and Axial Flow
(
Academic Press
,
1998
), Vol.
1
.
18.
B.
Seyed-Aghazadeh
and
Y.
Modarres-Sadeghi
, “
Reconstructing the vortex-induced-vibration response of flexible cylinders using limited localized measurement points
,”
J. Fluids Struct.
65
,
433
446
(
2016
).
19.
B.
Seyed-Aghazadeh
,
M.
Edraki
, and
Y.
Modarres-Sadeghi
, “
Effects of boundary conditions on vortex-induced vibration of a fully submerged flexible cylinder
,”
Exp. Fluids
60
,
1
14
(
2019
).
20.
B.
Seyed-Aghazadeh
and
Y.
Modarres-Sadeghi
, “
An experimental study to investigate the validity of the independence principle for vortex-induced vibration of a flexible cylinder over a range of angles of inclination
,”
J. Fluids Struct.
78
,
343
355
(
2018
).
21.
B.
Seyed-Aghazadeh
,
N.
Anderson
, and
S.
Dulac
, “
Flow-induced vibration of high-mass ratio isolated and tandem flexible cylinders with fixed boundary conditions
,”
J. Fluids Struct.
103
,
103276
(
2021
).
22.
S.
Mousavisani
,
G.
Castro
, and
B.
Seyed-Aghazadeh
, “
Experimental investigation on flow-induced vibration of two high mass-ratio flexible cylinders in tandem arrangement
,”
J. Fluids Struct.
113
,
103640
(
2022
).
23.
D.
Schanz
,
S.
Gesemann
, and
A.
Schröder
, “
Shake-the-box: Lagrangian particle tracking at high particle image densities
,”
Exp. Fluids
57
,
1
27
(
2016
).
24.
L.
Chen
,
J.
Wu
, and
B.
Cheng
, “
Volumetric measurement and vorticity dynamics of leading-edge vortex formation on a revolving wing
,”
Exp. Fluids
60
(
1–15
),
12
(
2019
).
25.
S.
Mousavisani
,
N. N.
Chowdhury
,
H.
Samsam-Khayani
,
H.
Samandari
, and
B.
Seyed-Aghazadeh
, “
Vortex-induced vibration of a two degree-of-freedom flexibly mounted circular cylinder in the crossflow direction
,”
J. Fluid Mech.
952
,
A26
(
2022
).
26.
S.
Mousavisani
,
H.
Samandari
, and
B.
Seyed-Aghazadeh
, “
Experimental investigation of flow-induced vibration and flow field characteristics of a flexible triangular cylinder
,”
J. Fluid Mech.
979
,
A15
(
2024
).
27.
A.
Boral
,
S.
Dutta
,
A.
Das
,
A.
Kumar
,
N.
Bej
,
P.
Chaubdar
,
B. N.
Das
, and
A. B.
Harichandan
, “
Drag reduction for flow past circular cylinder using static extended trailing edge
,”
ASME Open J. Eng.
2
,
021016
(
2023
).
28.
M.
Argentina
and
L.
Mahadevan
, “
Fluid-flow-induced flutter of a flag
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
1829
1834
(
2005
).
29.
G.
Berkooz
,
P.
Holmes
, and
J. L.
Lumley
, “
The proper orthogonal decomposition in the analysis of turbulent flows
,”
Annu. Rev. Fluid Mech.
25
,
539
575
(
1993
).
30.
P.
Holmes
,
J. L.
Lumley
,
G.
Berkooz
, and
C. W.
Rowley
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
(
Cambridge University Press
,
2012
).
31.
K.
Taira
,
S. L.
Brunton
,
S. T. M.
Dawson
,
C. W.
Rowley
,
T.
Colonius
,
B. J.
McKeon
,
O. T.
Schmidt
,
S.
Gordeyev
,
V.
Theofilis
, and
L. S.
Ukeiley
, “
Modal analysis of fluid flows: An overview
,”
AIAA J.
55
,
4013
4041
(
2017
).
32.
L.
Sirovich
, “
Turbulence and the dynamics of coherent structures. Parts I, II and III
,”
Q. Appl. Math.
45
,
561
590
(
1987
).
33.
G.
Riches
,
R.
Martinuzzi
, and
C.
Morton
, “
Proper orthogonal decomposition analysis of a circular cylinder undergoing vortex-induced vibrations
,”
Phys. Fluids
30
,
105103
(
2018
).
34.
J.
Weiss
, “
A tutorial on the proper orthogonal decomposition
,” in
AIAA Aviation 2019 Forum, Dallas, Texas
, 17-21 June
2019
.
35.
D.
Deep
,
A.
Sahasranaman
, and
S.
Senthilkumar
, “
POD analysis of the wake behind a circular cylinder with splitter plate
,”
Eur. J. Mech. B
93
,
1
12
(
2022
).
36.
A. F.
Andonian
, “
Vortex shedding in two-dimensional flow around two cylinders
,”
M.S. thesis
(
University of Massachusetts
,
Dartmouth
,
2023
).
You do not currently have access to this content.