To ensure the flow safety of the offshore gathering pipeline system, it is critical to study the large-scale pressure wave propagation behavior and predict the two-phase pressure drop in the subsea pipeline. In this paper, the local flow structure, pressure wave propagation characteristics, and two-phase pressure drop of the horizontal pipeline are obtained in a long-distance pipeline S-shaped riser system with a diameter of 46 mm and a total length of 1722 m. The overall-local correlation flow pattern map in the pipeline–riser system is proposed. The propagation modes of the pressure wave induced by the riser's pressure fluctuation in the horizontal pipeline under different overall flow patterns are clarified, and the correlations for predicting the propagation velocity and the attenuation coefficient of the pressure wave are proposed. The correlation for predicting the two-phase pressure drop of long-distance horizontal pipeline in the pipeline–riser system is established, and 88.23% of the data are within the error interval of ± 10%.

1.
J.
Fabre
,
L. L.
Peresson
,
J.
Corteville
,
R.
Odello
, and
T.
Bourgeois
, “
Severe slugging in pipeline/riser systems
,”
SPE Prod Eng.
5
,
299
305
(
1990
).
2.
J. Ø.
Tengesdal
,
C.
Sarica
, and
L.
Thompson
, “
Severe slugging attenuation for deepwater multiphase pipeline and riser systems
,”
SPE Prod. Facil.
18
,
269
(
2003
).
3.
R.
Malekzadeh
,
R. A. W. M.
Henkes
, and
R. F.
Mudde
, “
Severe slugging in a long pipeline-riser system: Experiments and predictions
,”
Int. J. Multiphase Flow
46
,
9
(
2012
).
4.
W. S.
Li
,
L. J.
Guo
, and
X. D.
Xie
, “
Effects of a long pipeline on severe slugging in an S-shaped riser
,”
Chem. Eng. Sci.
171
,
379
(
2017
).
5.
Y.
Cao
,
Q.
Xu
,
H.
Yu
,
B.
Huang
, and
L.
Guo
, “
Experimental investigation and prediction of overall and local flow patterns in pipeline-riser systems
,”
Int. J. Multiphase Flow
175
,
104794
(
2024
).
6.
S.
Park
and
O. J.
Nydal
, “
Study on severe slugging in an S-shaped riser: Small-scale experiments compared with simulations
,”
Oil Gas Facil.
3
,
72
(
2014
).
7.
Y.
Bai
and
Q.
Bai
,
Subsea Pipelines and Risers
(
Elsevier
,
2005
).
8.
T. Y.
Makogon
,
Handbook of Multiphase Flow Assurance
(
Gulf Professional Publishing
,
2019
).
9.
J.
Montgomery
,
Severe Slugging and Unstable Flows in an S-Shaped Riser
(
Cranfield University
,
2002
).
10.
R.
Malekzadeh
,
R. F.
Mudde
, and
R. A. W. M.
Henkes
, “
Dual-frequency severe slugging in horizontal pipeline-riser systems
,”
J. Fluids Eng.
134
,
121301
(
2012
).
11.
C.
Xie
,
L. J.
Guo
,
W. S.
Li
,
H. L.
Zhou
, and
S. F.
Zou
, “
The influence of backpressure on severe slugging in multiphase flow pipeline-riser systems
,”
Chem. Eng. Sci.
163
,
68
(
2017
).
12.
Q.
Xu
,
X.
Wang
,
L.
Chang
,
J.
Wang
,
Y.
Li
,
W.
Li
, and
L.
Guo
, “
Signal optimization for recognition of gas–liquid two-phase flow regimes in a long pipeline-riser system
,”
Measurement
200
,
111581
(
2022
).
13.
Q.
Xu
,
X.
Yuan
,
C.
Liu
,
X.
Wang
, and
L.
Guo
, “
Signal selection for identification of multiphase flow patterns in offshore pipeline-riser system
,”
Ocean Eng.
268
,
113395
(
2023
).
14.
H.
Zhu
,
J.
Hu
, and
Y.
Gao
, “
Severe slug flow-induced nonlinear dynamic behavior of a flexible catenary riser
,”
Phys. Fluids
33
,
071705
(
2021
).
15.
H.
Zhu
,
J.
Hu
,
Y.
Gao
,
C.
Ji
, and
T.
Zhou
, “
Experimental investigation on flow-induced vibration of a flexible catenary riser conveying severe slugging with variable gas superficial velocity
,”
J. Fluids Struct.
113
,
103650
(
2022
).
16.
Y.
Taitel
,
D.
Barnea
, and
A. E.
Dukler
, “
Modelling flow pattern transitions for steady upward gas‐liquid flow in vertical tubes
,”
AIChE J
26
,
345
(
1980
).
17.
M.
Ishii
and
K.
Mishima
, “
Two-fluid model and hydrodynamic constitutive relations
,”
Nucl. Eng. Des.
82
,
107
(
1984
).
18.
J. E.
Juliá
,
Y.
Liu
,
S.
Paranjape
, and
M.
Ishii
, “
Upward vertical two-phase flow local flow regime identification using neural network techniques
,”
Nucl. Eng. Des.
238
,
156
(
2008
).
19.
B.
Wu
,
M.
Firouzi
,
T.
Mitchell
,
T. E.
Rufford
,
C.
Leonardi
, and
B.
Towler
, “
A critical review of flow maps for gas-liquid flows in vertical pipes and annuli
,”
Chem. Eng. J.
326
,
350
(
2017
).
20.
H.-Y.
Yu
,
Q.
Xu
,
Y.-Q.
Cao
,
B.
Huang
,
H.-X.
Wang
, and
L.-J.
Guo
, “
Characterizations of gas-liquid interface distribution and slug evolution in a vertical pipe
,”
Pet. Sci.
20
,
3157
(
2023
).
21.
V.
Tin
,
Severe Slugging in Flexible Risers
(American Society of Mechanical Engineers,
Cannes
,
France
,
1991
).
22.
S.
Mokhatab
, “
Severe slugging in a catenary-shaped riser: Experimental and simulation studies
,”
Pet. Sci. Technol.
25
,
719
(
2007
).
23.
P.
Wang
,
D.
Deng
,
J.
Gong
,
M.
Peng
,
K.
Wang
, and
J.
Chen
, “
Severe slugging in a free-standing riser
,”
Pet. Sci. Technol.
31
,
1933
(
2013
).
24.
H.
Zhu
,
J.
Hu
,
Y.
Gao
,
W.
Li
,
J.
Li
, and
B.
Xu
, “
An insight into the severe slugging characteristics in a catenary flexible riser
,”
Phys. Fluids
35
,
123322
(
2023
).
25.
H.
Zhu
,
Y.
Li
,
J.
Song
,
P.
Liu
,
M.
Zhou
, and
T.
Zhou
, “
Experimental investigation of the flow-induced vibration of a hybrid riser conveying severe slugging
,”
Phys. Fluids
36
,
063332
(
2024
).
26.
Z.
Schmidt
,
Experimental Study of Two-Phase Slug Flow in a Pipeline-Riser Pipe System
(
The University of Tulsa
,
1977
).
27.
X. M.
Luo
,
L. M.
He
, and
H. W.
Ma
, “
Flow pattern and pressure fluctuation of severe slugging in pipeline-riser system
,”
Chin. J. Chem. Eng.
19
,
26
(
2011
).
28.
B. F. M.
Pots
,
I. G.
Bromilow
, and
M. J. W. F.
Konijn
, “
Severe slug flow in offshore flowline riser systems
,”
SPE J.
2
(
04
),
319
324
(
1987
).
29.
Y.
Taitel
,
S.
Vierkandt
,
O.
Shoham
, and
J. P.
Brill
, “
Severe slugging in a riser system: Experiments and modeling
,”
Int. J. Multiphase Flow
16
,
57
(
1990
).
30.
X.
Wang
,
L.
Guo
,
X.
Zhang
,
H.
Gu
,
C.
Lin
,
D.
Zhao
, and
F.
Guo
, “
Experimental study of severe slugging in pipeline-riser system
,”
J. Eng. Thermophys.
26
,
799
(
2005
).
31.
N.
Li
,
L.
Guo
, and
W.
Li
, “
Gas–liquid two-phase flow patterns in a pipeline–riser system with an S-shaped riser
,”
Int. J. Multiphase Flow
55
,
1
10
(
2013
).
32.
H. L.
Zhou
,
L. J.
Guo
,
H.
Yan
, and
S. C.
Kuang
, “
Investigation and prediction of severe slugging frequency in pipeline-riser systems
,”
Chem. Eng. Sci.
184
,
72
(
2018
).
33.
Y.
Taitel
and
A. E.
Dukler
, “
A model for predicting flow regime transitions in horizontal and near horizontal gas‐liquid flow
,”
AIChE J.
22
,
47
(
1976
).
34.
D.
Barnea
, “
A unified model for predicting flow-pattern transitions for the whole range of pipe inclinations
,”
Int. J. Multiphase Flow
13
(
1
),
1
12
(
1987
).
35.
S. L.
Kokal
and
J. F.
Stanislav
, “
An experimental study of two-phase flow in slightly inclined pipes—I. Flow patterns
,”
Chem. Eng. Sci.
44
,
665
(
1989
).
36.
Z.
Schmidt
,
D. R.
Doty
, and
K.
Dutta-Roy
, “
Severe slugging in offshore pipeline riser-pipe systems
,”
SPE J.
25
,
27
(
1985
).
37.
S.
Gao
,
Research on Gas-Liquid Sever Slugging Characteristics in Pipeline-Riser Systems
(
Shanghai Jiao Tong University
,
2012
).
38.
T.
Yao
,
Q. H.
Wu
,
Z. G.
Liu
,
S. F.
Zou
,
Q.
Xu
, and
L. J.
Guo
, “
Experimental investigation on mitigation of severe slugging in pipeline-riser system by quasi-plane helical pipe device
,”
Exp. Therm. Fluid Sci.
102
,
189
(
2019
).
39.
S.
Zou
,
L.
Guo
, and
T.
Yao
, “
Upstream-flow-based mechanisms for global flow regime transition of gas/liquid two-phase flow in pipeline-riser systems
,”
Chem. Eng. Sci.
240
,
116542
(
2021
).
40.
J. L.
Baliño
,
K. P.
Burr
, and
R. H.
Nemoto
, “
Modeling and simulation of severe slugging in air–water pipeline–riser systems
,”
Int. J. Multiphase Flow
36
,
643
(
2010
).
41.
A.
Fadairo
,
C.
Obi
,
K.
Ling
,
V.
Rasouli
,
O.
Aboaba
, and
O.
Gbadamosi
, “
An improved model for severe slugging stability criteria in offshore pipeline-riser systems
,”
Pet. Res.
7
,
318
(
2022
).
42.
G. R.
Azevedo
,
J. L.
Baliño
, and
I.
Andreolli
, “
Nonlinear stability analysis for severe slugging in an air–water two-phase flow
,”
Int. J. Multiphase Flow
159
,
104334
(
2023
).
43.
Y.
Chang
,
Q.
Xu
,
Q.
Wu
,
X.
Zhao
,
B.
Huang
,
Y.
Wang
, and
L.
Guo
, “
Experimental study of the hydraulic jump phenomenon induced by the downstream riser structure in a pipeline–riser system
,”
Chem. Eng. Sci.
256
,
117687
(
2022
).
44.
J. J.
Xiao
,
O.
Shonham
, and
J. P.
Brill
, “
A comprehensive mechanistic model for two-phase flow in pipelines
,” in Paper Presented at the SPE Annual Technical Conference and Exhibition, New Orleans, LA (1990).
45.
H. Q.
Zhang
,
Q.
Wang
,
C.
Sarica
, and
J. P.
Brill
, “
Unified model for gas-liquid pipe flow via slug dynamics—Part 1: Model development
,”
J. Energy Resour. Technol.
125
,
266
(
2003
).
46.
H. Q.
Zhang
,
Q.
Wang
,
C.
Sarica
, and
J. P.
Brill
, “
Unified model for gas-liquid pipe flow via slug dynamics—Part 2: Model validation
,”
J. Energy Resour. Technol.
125
,
274
(
2003
).
47.
M. A.
Woldesemayat
and
A. J.
Ghajar
, “
Comparison of void fraction correlations for different flow patterns in horizontal and upward inclined pipes
,”
Int. J. Multiphase Flow
33
,
347
(
2007
).
48.
Y.
Wang
,
Z.
Liu
,
Y.
Chang
,
X.
Zhao
, and
L.
Guo
, “
Experimental study of gas-liquid two-phase wavy stratified flow in horizontal pipe at high pressure
,”
Int. J. Heat Mass Transfer
143
,
118537.1
(
2019
).
49.
A.
Arabi
,
Y.
Salhi
,
Y.
Zenati
,
E. K.
Si-Ahmed
, and
J.
Legrand
, “
On gas-liquid intermittent flow in a horizontal pipe: Influence of sub-regime on slug frequency
,”
Chem. Eng. Sci.
211
,
115251
(
2020
).
50.
A.
Arabi
,
A.
Azzi
,
R.
Kadi
,
A.
Al-Sarkhi
, and
B.
Hewakandamby
, “
Empirical modelization of intermittent gas/liquid flow hydrodynamic parameters: The importance of distinguishing between plug and slug flows
,”
SPE Prod. Oper.
36
,
703
(
2021
).
51.
E. M.
Al-Safran
, “
Probabilistic modeling of slug frequency in gas/liquid pipe flow using the Poisson probability theory
,”
J. Pet. Sci. Eng.
138
,
88
(
2016
).
52.
O. M.
Shaaban
and
E. M.
Al-Safran
, “
Prediction of slug length for high-viscosity oil in gas/liquid horizontal and slightly inclined pipe flows
,”
Geoenergy Sci. Eng.
221
,
211348
(
2023
).
53.
E.
Al-Safran
, “
Investigation and prediction of slug frequency in gas/liquid horizontal pipe flow
,”
J. Pet. Sci. Eng.
69
,
143
(
2009
).
54.
L.
Dalla Maria
and
E. S.
Rosa
, “
Void fraction and pressure waves in a transient horizontal slug flow
,”
Int. J. Multiphase. Flow
84
,
229
(
2016
).
55.
J. C.
Martins
and
P.
Seleghim
, Jr.
, “
Propagation and attenuation of pressure waves in dispersed two-phase flows
,”
J. Fluids Eng.
139
,
011304
(
2017
).
56.
P.
Hall
,
The Propagation of Pressure Waves and Critical Flow in Two-Phase Mixtures
(
Heriot-Watt University
,
1971
).
57.
R. E.
Henry
et al, “
Pressure-pulse propagation in two-phase one- and two-component mixtures
,” Argonne National Lab., Ill. (
1971
).
58.
D. L.
Nguyen
,
E. R. F.
Winter
, and
M.
Greiner
, “
Sonic velocity in 2-phase systems
,”
Int. J. Multiphase Flow
7
,
311
(
1981
).
59.
S. J.
Lee
,
K. S.
Chang
, and
K.
Kim
, “
Pressure wave speeds from the characteristics of two fluids, two-phase hyperbolic equation system
,”
Int. J. Multiphase Flow
24
,
855
(
1998
).
60.
B.
Bai
,
F.
Huang
,
L.
Guo
, and
X.
Wang
, “
Propagation of pressure wave for bubbly flow in vertical upward tube
,”
Nucl. Power Eng.
26
,
323
(
2005
).
61.
F.
Huang
,
M.
Takahashi
, and
L. J.
Gu
, “
Pressure wave propagation in air-water bubbly and slug flow
,”
Prog. Nucl. Energy
47
,
648
(
2005
).
62.
H. B.
Karplus
, “
Velocity of sound in a liquid containing gas bubbles
,”
J. Acoust. Soc. Am.
29
,
1261
(
1957
).
63.
Y.
Mori
,
K.
Hijikata
, and
A.
Komine
, “
Propagation of pressure waves in two-phase flow
,”
Int. J. Multiphase Flow
2
,
139
(
1975
).
64.
S.-J.
Yi
,
M.-S.
Chung
, and
I.
Toth
, “
Pressure wave propagation phenomena in the pipe system of a nuclear power plant
,”
Ann. Nucl. Energy
87
,
157
(
2016
).
65.
X.
Kong
,
Y.
Lin
,
Y.
Qiu
, and
X.
Qi
, “
A novel dynamic model for predicting pressure wave velocity in four-phase fluid flowing along the drilling annulus
,”
Math. Probl. Eng.
2015
,
1341021
.
66.
H.
Li
,
R.
Chen
,
X.
Li
,
Y.
Meng
,
L.
Zhu
, and
J.
Zhao
, “
Investigation of pressure wave propagation and attenuation characteristics in wellbore gas-liquid two-phase flow
,”
J. Nat. Gas Sci. Eng.
35
,
1088
(
2016
).
67.
C.
Gu
,
Q.
Li
,
R.
Ma
,
Y.
Lin
,
X.
Li
,
Y.
Li
,
A.
Zhang
,
Y.
Li
, and
B.
Yin
, “
Propagation characteristics of Doppler ultrasonic wave in gas–liquid two-phase flow in an offshore deepwater riser
,”
Nat. Gas Ind. B
41
,
97
(
2021
).
68.
M.
Ferrante
and
B.
Brunone
, “
Pipe system diagnosis and leak detection by unsteady-state tests. 1. Harmonic analysis
,”
Adv. Water Resour.
26
,
95
(
2003
).
69.
M.
Ferrante
and
B.
Brunone
, “
Pipe system diagnosis and leak detection by unsteady-state tests. 2. Wavelet analysis
,”
Adv. Water Resour.
26
,
107
(
2003
).
70.
L. P.
Almeida
,
G.
Masselink
,
P.
Russell
,
M.
Davidson
,
R.
McCall
, and
T.
Poate
, “Swash zone morphodynamics of coarse-grained beaches during energetic wave conditions,”
Coastal Eng. Proc.
1
,
35
(
2014
).
71.
L.
Fang
,
L.
Meng
,
C.
Liu
, and
Y.
Li
, “
Experimental study on the amplitude characteristics and propagation velocity of dynamic pressure wave for the leakage of gas-liquid two-phase intermittent flow in pipelines
,”
Int. J. Pressure Vessels Piping
193
,
104457
(
2021
).
72.
J. W. R.
Boyd
and
J.
Varley
, “
The uses of passive measurement of acoustic emissions from chemical engineering processes
,”
Chem. Eng. Sci.
56
,
1749
(
2001
).
73.
C. S.
Martin
and
M.
Padmanabhan
, “
Pressure pulse propagation in two-component slug flow
,”
J. Fluids Eng.
101
,
44
(
1979
).
74.
A. V.
Korolev
, “
Dynamics of low-velocity two-phase flows
,”
Power Eng.
27
(
5
),
101
106
(
1989
).
75.
S. B.
Gavage
, “
Analyse numérique des modèles hydrodynamiques d'écoulements diphasiques instationnaires dans les réseaux de production pétrolière
,” Ph.D. thesis (École Normale Supérieure, Lyon, 1991).
76.
M. S.
Chung
,
K. S.
Chang
, and
S. J.
Lee
, “
Wave propagation in two-phase flow based on a new hyperbolic two-fluid model
,”
Numer. Heat Transfer, Part A
38
,
169
(
2000
).
77.
X.-X.
Xu
and
J.
Gong
, “
A united model for predicting pressure wave speeds in oil and gas two-phase pipeflows
,”
J. Pet. Sci. Eng.
60
,
150
(
2008
).
78.
D. A.
Chisholm
, “
A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow
,”
Int. J. Heat Mass Transfer
10
,
1767
(
1967
).
79.
D. H.
Beggs
and
J. P.
Brill
, “
A study of two-phase flow in inclined pipes
,”
J. Pet. Technol.
25
,
607
(
1973
).
80.
Y.
Xu
,
X.
Fang
,
X.
Su
,
Z.
Zhou
, and
W.
Chen
, “
Evaluation of frictional pressure drop correlations for two-phase flow in pipes
,”
Nucl. Eng. Des.
253
,
86
(
2012
).
81.
A. J.
Ghajar
,
Pressure Drop
(
Springer International Publishing
,
Cham
,
2020
).
82.
P.
Sassi
,
Y.
Stiriba
,
J.
Lobera
,
V.
Palero
, and
J.
Pallarès
, “
Experimental analysis of gas–liquid–solid three-phase flows in horizontal pipelines
,”
Flow, Turbul. Combust.
105
,
1035
(
2020
).
83.
A.
Arabi
,
Y.
Salhi
,
Y.
Zenati
,
E.-K.
Si-Ahmed
, and
J.
Legrand
, “
A discussion on the relation between the intermittent flow sub-regimes and the frictional pressure drop
,”
Int. J. Heat Mass Transfer
181
,
121895
(
2021
).
84.
T.
Al-Wahaibi
,
Y.
Al-Wahaibi
,
A.
Al-Ajmi
,
R.
Al-Hajri
,
N.
Yusuf
,
A. S.
Olawale
, and
I. A.
Mohammed
, “
Experimental investigation on flow patterns and pressure gradient through two pipe diameters in horizontal oil–water flows
,”
J. Pet. Sci. Eng.
122
,
266
(
2014
).
85.
B.
Sun
,
C.
Yang
,
Z.
Wang
,
X.
Wang
, and
N.
Wang
, “
Methodology for pressure drop of bubbly flow based on energy dissipation
,”
J. Pet. Sci. Eng.
177
,
432
(
2019
).
86.
B. A.
Shannak
, “
Frictional pressure drop of gas liquid two-phase flow in pipes
,”
Nucl. Eng. Des.
238
,
3277
(
2008
).
87.
A. J.
Ghajar
and
S. M.
Bhagwat
,
Flow Patterns, Void Fraction and Pressure Drop in Gas-Liquid Two Phase Flow at Different Pipe Orientations
(
Springer International Publishing
,
Cham
,
2014
).
88.
F. A.
Hamad
,
F.
Faraji
,
C. G. S.
Santim
,
N.
Basha
, and
Z.
Ali
, “
Investigation of pressure drop in horizontal pipes with different diameters
,”
Int. J. Multiphase Flow
91
,
120
(
2017
).
89.
A. S.
Al-Dogail
and
R. N.
Gajbhiye
, “
Effects of density, viscosity and surface tension on flow regimes and pressure drop of two-phase flow in horizontal pipes
,”
J. Pet. Sci. Eng.
205
,
108719
(
2021
).
90.
H.-G.
Kim
and
S.-M.
Kim
, “
Experimental investigation of flow and pressure drop characteristics of air-oil slug flow in a horizontal tube
,”
Int. J. Heat Mass Transfer
183
,
122063
(
2022
).
91.
H. M.
Mekisso
, “
Comparison of frictional pressure drop correlations for isothermal two-phase horizontal flow
,” M.S. thesis (
Oklahoma State University
,
2013
).
92.
M. S.
Shadloo
,
A.
Rahmat
,
A.
Karimipour
, and
S.
Wongwises
, “
Estimation of pressure drop of two-phase flow in horizontal long pipes using artificial neural networks
,”
J. Energy Resour. Technol.
142
,
112110
(
2020
).
93.
F.
Zhang
,
Y.
Zhang
,
J.
Li
,
H.
Zhu
,
J.
Zhang
, and
Y.
Qi
, “
Pressure drop prediction model of the gas-liquid stratified flow development section in the horizontal pipeline
,”
J. Energy Resour. Technol.
145
,
113101
(
2023
).
94.
R. W.
Lockhart
and
R. C.
Martinelli
, “
Proposed correlation of data for isothermal two-phase, two-component flow in pipes
,”
Chem. Eng. Prog.
45
,
38
(
1949
).
95.
D.
Chisholm
, “
Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels
,”
Int. J. Heat Mass Transfer
16
,
347
(
1973
).
96.
L.
Friedel
, “
Improved friction pressure drop correlation for horizontal and vertical two-phase pipe flow
,” in
Proceedings of the European Two-Phase Flow Group Meetings, Ispra, Italy
(Ispra Establishment,
1979
), Vol.
18
, p.
485
.
97.
M. M.
Awad
and
Y. S.
Muzychka
, “
A simple asymptotic compact model for two-phase frictional pressure gradient in horizontal pipes
,” in
ASME International Mechanical Engineering Congress and Exposition
(
ASME
,
2004
), pp.
675
685
.
98.
L.
Sun
and
K.
Mishima
, “
An evaluation of prediction methods for saturated flow boiling heat transfer in mini-channels
,”
Int. J. Heat Mass Transfer
52
,
5323
(
2009
).
99.
W. H.
McAdams
,
W. K.
Woods
, and
L. C.
Heroman
, Jr.
, “
Vaporization inside horizontal tubes—II Benzene-oil mixtures
,”
Trans. Am. Soc. Mech. Eng.
64
,
193
(
1942
).
100.
A.
Cicchitti
,
C.
Lombardi
,
M.
Silvestri
,
G.
Soldaini
, and
R.
Zavattarelli
, “
Two-phase cooling experiments: Pressure drop, heat transfer and burnout measurements
,” Centro Informazioni Studi Esperienze, Milan (1959).
101.
A. E.
Dukler
,
M.
Wicks
III
, and
R. G.
Cleveland
, “
Frictional pressure drop in two-phase flow: A. A comparison of existing correlations for pressure loss and holdup
,”
AIChE J.
10
,
38
(
1964
).
102.
M.
Fourar
and
S.
Bories
, “
Experimental study of air-water two-phase flow through a fracture (narrow channel)
,”
Int. J. Multiphase Flow
21
,
621
(
1995
).
103.
M. M.
Awad
and
Y. S.
Muzychka
, “
Effective property models for homogeneous two-phase flows
,”
Exp. Therm. Fluid Sci.
33
,
106
(
2008
).
104.
C.
Lombardi
and
E.
Pedrocchi
, “
A pressure drop correlation in tow-phase flow
,”
Energy Nucl.
19
,
91
(
1972
).
105.
S. S.
Agrawal
,
G. A.
Gregory
, and
G. W.
Govier
, “
An analysis of horizontal stratified two phase flow in pipes
,”
Can. J. Chem. Eng.
51
,
280
(
1973
).
106.
Z.
Chen
,
Q.
Li
,
D.
Meier
, and
H. J.
Warnecke
, “
Convective heat transfer and pressure loss in rectangular ducts with drop-shaped pin fins
,”
Heat Mass Transfer
33
,
219
(
1997
).
107.
M. K.
Nicholson
,
K.
Aziz
, and
G. A.
Gregory
, “
Intermittent two phase flow in horizontal pipes: Predictive models
,”
Can. J. Chem. Eng.
56
,
653
(
1978
).
108.
A. E.
Dukler
and
M. G.
Hubbard
, “
A model for gas-liquid slug flow in horizontal and near horizontal tubes
,”
Ind. Eng. Chem. Fund.
14
,
337
(
1975
).
109.
J.
Hart
,
P. J.
Hamersma
, and
J. M. H.
Fortuin
, “
Correlations predicting frictional pressure drop and liquid holdup during horizontal gas-liquid pipe flow with a small liquid holdup
,”
Int. J. Multiphase Flow
15
,
947
(
1989
).
110.
J. M.
Mandhane
,
G. A.
Gregory
, and
K.
Aziz
, “
Critical evaluation of friction pressure-drop prediction methods for gas-liquid flow in horizontal pipes
,”
J. Pet. Technol.
29
,
1348
(
1977
).
111.
Z.
Olujic
, “
Predicting two-phase-flow friction loss in horizontal pipes
,”
Chem. Eng.
92
(
13
),
45
(
1985
).
112.
J.
Moreno Quibén
and
J. R.
Thome
, “
Flow pattern based two-phase frictional pressure drop model for horizontal tubes. Part I: Diabatic and adiabatic experimental study
,”
Int. J. Heat Fluid Flow
28
,
1049
(
2007
).
113.
J.
Moreno Quibén
and
J. R.
Thome
, “
Flow pattern based two-phase frictional pressure drop model for horizontal tubes, Part II: New phenomenological model
,”
Int. J. Heat Fluid Flow
28
,
1060
(
2007
).
114.
M.
Behnia
, “
Most accurate two-phase pressure-drop correlation identified
,”
Oil Gas J.
89
(
37
),
90
(
1991
).
115.
M. E. G.
Ferguson
and
P. L.
Spedding
, “
Measurement and prediction of pressure drop in two-phase flow
,”
J. Chem. Technol. Biotechnol.
63
,
262
(
1995
).
116.
S.
Momoki
,
A.
Bar-Cohen
, and
A. E.
Bergles
, “
Estimation of major correlations for frictional pressure drop in gas-liquid two-phase flow in horizontal pipes using predicted flow regime information
,”
Multiphase Sci. Technol.
12
,
16
(
2000
).
117.
C.
Tribbe
and
H. M.
Müller-Steinhagen
, “
An evaluation of the performance of phenomenological models for predicting pressure gradient during gas–liquid flow in horizontal pipelines
,”
Int. J. Multiphase Flow
26
,
1019
(
2000
).
118.
D.
Gonzalez
,
H.
Schümann
, and
J.
Kjølaas
, “
Pipe flow experiments of unstable oil-water dispersions with three different oil viscosities: Flow pattern, pressure drop and droplet size measurements
,”
J. Pet. Sci. Eng.
218
,
110996
(
2022
).
119.
Y.
Cao
,
Q.
Xu
,
H.
Yu
,
B.
Huang
,
T.
Liu
, and
L.
Guo
, “
Experimental investigation on interface characteristics of gas-liquid two-phase flow in a kilometer-scale pipeline
,”
Exp. Therm. Fluid Sci.
149
,
111017
(
2023
).
120.
G. B.
Wallis
,
One-Dimensional Two-Phase Flow
(
Courier Dover Publications
,
1969
).
121.
H. J. W. M.
Legius
,
H. E. A.
van den Akker
, and
T.
Narumo
, “
Measurements on wave propagation and bubble and slug velocities in cocurrent upward two-phase flow
,”
Exp. Therm. Fluid Sci.
15
,
267
(
1997
).
122.
W. L.
Owens
, “
Two-phase pressure gradient
,” in ASME International Developments in Heat Transfer, Part II (ASME, 1961), pp.
363
368
.
123.
J. M.
Chenoweth
and
M. W.
Martin
, “
Turbulent two-phase flow
,”
Petroleum Refiner
,
34
(
10
),
151
155
(
1955
).
124.
P.
Theissing
, “
A generally valid method for calculating frictional pressure drop on multiphase flow
,”
Chem. Ing. Tech.
52
,
344
(
1980
).
125.
D. R. H.
Beattie
and
P. B.
Whalley
, “
Simple two-phase frictional pressure drop calculation method
,”
Int. J. Multiphase Flow
8
,
83
(
1982
).
126.
H.
Müller-Steinhagen
and
K.
Heck
, “
A simple friction pressure drop correlation for two-phase flow in pipes
,”
Chem. Eng. Process.
20
,
297
(
1986
).
127.
M. M.
Awad
, “
Two-phase flow modeling in circular pipes
,” Ph.D. thesis (
Memorial University of Newfoundland
,
Canada
,
2007
).
128.
S.
Saisorn
and
S.
Wongwises
, “
Flow pattern, void fraction and pressure drop of two-phase air–water flow in a horizontal circular micro-channel
,”
Exp. Therm. Fluid Sci.
32
,
748
(
2008
).
129.
W.
Liu
,
Q.
Xu
,
S.
Zou
,
Y.
Chang
, and
L.
Guo
, “
Optimization of differential pressure signal acquisition for recognition of gas–liquid two-phase flow patterns in pipeline-riser system
,”
Chem. Eng. Sci.
229
,
116043
(
2021
).
130.
J.
Thaker
and
J.
Banerjee
, “
Characterization of two-phase slug flow sub-regimes using flow visualization
,”
J. Pet. Sci. Eng.
135
,
561
(
2015
).
131.
Z.
Ruder
,
P. J.
Hanratty
, and
T. J.
Hanratty
, “
Necessary conditions for the existence of stable slugs
,”
Int. J. Multiphase Flow
15
,
209
(
1989
).
132.
J.
Thaker
and
J.
Banerjee
, “
Influence of intermittent flow sub-patterns on erosion-corrosion in horizontal pipe
,”
J. Pet. Sci. Eng.
145
,
298
(
2016
).
133.
Y.
Chang
,
Q.
Xu
,
S.
Zou
,
X.
Zhao
,
Q.
Wu
,
Y.
Wang
,
D.
Thévenin
, and
L.
Guo
, “
An improved void fraction prediction model for gas-liquid two-phase flows in pipeline-riser systems
,”
Chem. Eng. Sci.
278
,
118919
(
2023
).
134.
Y.
Cao
,
Q.
Xu
,
H.
Yu
,
B.
Huang
,
T.
Liu
, and
L.
Guo
, “
Influence of pipeline diameters and fluid properties on slug frequency in horizontal pipelines
,”
Chem. Eng. Sci.
283
,
119397
(
2024
).
135.
R.
Kong
,
A.
Rau
,
S.
Kim
,
S.
Bajorek
,
K.
Tien
, and
C.
Hoxie
, “
Experimental study of horizontal air-water plug-to-slug transition flow in different pipe sizes
,”
Int. J. Heat Mass Transfer
123
,
1005
(
2018
).
136.
X.
Fang
,
Y.
Xu
, and
Z.
Zhou
, “
New correlations of single-phase friction factor for turbulent pipe flow and evaluation of existing single-phase friction factor correlations
,”
Nucl. Eng. Des.
241
,
897
(
2011
).
You do not currently have access to this content.