When calculating the transient flow around a bridge structure, traditional computational fluid dynamics methods are extremely time-consuming, especially for multiparameter optimization analyses. Inspired by the development of deep graph neural networks with a mesh structure, this paper describes a spatiotemporal prediction framework for the rapid reconstruction and prediction of transient flows on large-scale unstructured grids. To ensure stability and reliability during self-supervised training, a causal self-attention mechanism is employed in the temporal model. The framework is trained and tested on a dataset containing 40 000 snapshots of bridge flow fields with Reynolds numbers ranging from 104 to 105. The relative mean square error of the model in predicting the velocity and pressure fields is found to be in the order of 103 and the relative error does not exceed 10%. This demonstrates that the model is capable of reconstructing high-dimensional flow field information from low-dimensional data. Furthermore, the proposed model achieves a computational speedup by two orders of magnitude compared with traditional computational fluid dynamics methods with respect to the temporal inference. To validate its ability to infer bridge aerodynamic characteristics, the model is used to predict the bridge surface pressure, aerodynamic coefficients, streamlines, and vorticity. The results demonstrate that the proposed model has reliable accuracy, representation, and stability in predicting bridge flow fields and identifying multiscale characteristics.

1.
M.
Raissi
,
A.
Yazdani
, and
G. E.
Karniadakis
, “
Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations
,”
Science
367
,
1026
1030
(
2020
).
2.
W.
Petersen
,
O.
Øiseth
, and
E.
Lourens
, “
Wind load estimation and virtual sensing in long-span suspension bridges using physics-informed gaussian process latent force models
,”
Mech. Syst. Sig. Process.
170
,
108742
(
2022
).
3.
K.
Ali
, “
New mathematical formulation of nonlinear unsteady wind loads on long-span bridge decks under nonstationary winds using time-delay neural network
,”
J. Struct. Eng.
148
,
06022003
(
2022
).
4.
C.
Fang
,
H.
Tang
,
Y.
Li
, and
Z.
Wang
, “
Effects of random winds and waves on a long-span cross-sea bridge using bayesian regularized back propagation neural network
,”
Adv. Struct. Eng.
23
,
733
748
(
2020
).
5.
K.
Li
,
Y.
Han
,
C.
Cai
,
P.
Hu
, and
C.
Li
, “
Experimental investigation on post-flutter characteristics of a typical steel-truss suspension bridge deck
,”
J. Wind Eng. Ind Aerodyn.
216
,
104724
(
2021
).
6.
S.
Laima
,
W.
Li
,
F.
Hui
,
X.
ZHOU
,
Z.
Zhang
,
W.
Chen
, and
L.
Hui
, “
Research progress of machine learning in bridge wind engineering
,”
China J. Highw. Transp.
36
,
1
13
(
2023
).
7.
Q.
ZHAN
,
C.
BAI
, and
Y.
GE
, “
Representation and reconstruction of flow around bridge deck using time history deep learning
,”
Eng. Mech.
40
,
13
19
(
2023
).
8.
X.
Deng
,
M.
Guo
,
Y.
Zhang
,
Y.
Tian
,
J.
Wu
,
H.
Wang
,
H.
Zhang
, and
J.
Le
, “
Intelligent reconstruction of unsteady combustion flow field of scramjet based on physical information constraints
,”
Phys. Fluids
36
,
75143
(
2024
).
9.
K.
Fukushima
,
S.
Miyake
, and
T.
Ito
, “
Neocognitron: A neural network model for a mechanism of visual pattern recognition
,”
IEEE Trans. Syst, Man, Cybern.
SMC-13
,
826
834
(
1983
).
10.
X.
Guo
,
W.
Li
, and
F.
Iorio
, “
Convolutional neural networks for steady flow approximation
,” in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(
Association for Computing Machinery
,
New York, NY, USA
,
2016
) p.
481
490
.
11.
J.
Tompson
,
K.
Schlachter
,
P.
Sprechmann
, and
K.
Perlin
, “
Accelerating eulerian fluid simulation with convolutional networks
,” in
Proceedings of the 34th International Conference on Machine Learning
(
Association for Computing Machinery
,
Sydney, NSW
,
2017
), Vol.
70
, pp.
3424
3433
.
12.
A.
Alguacil
,
M.
Bauerheim
,
M. C.
Jacob
, and
S.
Moreau
, “
Predicting the propagation of acoustic waves using deep convolutional neural networks
,”
J. Sound Vib.
512
,
116285
(
2021
).
13.
Y.
Cao
,
M.
Chai
,
M.
Li
, and
C.
Jiang
, “
Efficient learning of mesh-based physical simulation with bi-stride multi-scale graph neural network
,” in
Proceedings of the 40th International Conference on Machine Learning
(
2023
).
14.
J.
Zhou
,
G.
Cui
,
S.
Hu
,
Z.
Zhang
,
C.
Yang
,
Z.
Liu
,
L.
Wang
,
C.
Li
, and
M.
Sun
, “
Graph neural networks: A review of methods and applications
,”
AI Open
1
,
57
81
(
2020
).
15.
Z.
Zhang
,
P.
Cui
, and
W.
Zhu
, “
Deep learning on graphs: A survey
,”
IEEE Trans. Knowl. Data Eng.
34
,
249
270
(
2022
).
16.
Z.
Wu
,
S.
Pan
,
F.
Chen
,
G.
Long
,
C.
Zhang
, and
P. S.
Yu
, “
A comprehensive survey on graph neural networks
,”
IEEE Trans. Neural Networks Learn. Syst.
32
,
4
24
(
2021
).
17.
T.
Pfaff
,
M.
Fortunato
,
A.
Sanchez-Gonzalez
, and
P.
Battaglia
, “
Learning mesh-based simulation with graph networks
,” in
International Conference on Learning Representations
(
2021
).
18.
D.
Mei
,
K.
Zhou
, and
C.-H.
Liu
, “
Unified finite-volume physics informed neural networks to solve the heterogeneous partial differential equations
,”
Knowl.-Based Syst.
295
,
111831
(
2024
).
19.
K.
Zuo
,
Z.
Ye
,
S.
Bu
,
X.
Yuan
, and
W.
Zhang
, “
Fast simulation of airfoil flow field via deep neural network
,”
Aerosp. Sci. Technol.
150
,
109207
(
2024
).
20.
W.
Cao
,
J.
Song
, and
W.
Zhang
, “
A solver for subsonic flow around airfoils based on physics-informed neural networks and mesh transformation
,”
Phys. Fluids
36
,
027134
(
2024
).
21.
J.
Jumper
,
R.
Evans
,
A.
Pritzel
,
T.
Green
,
M.
Figurnov
,
O.
Ronneberger
,
K.
Tunyasuvunakool
,
R.
Bates
,
A.
Zidek
,
A.
Potapenko
,
A.
Bridgland
,
C.
Meyer
,
S. A. A.
Kohl
,
A. J.
Ballard
,
A.
Cowie
,
B.
Romera-Paredes
,
S.
Nikolov
,
R.
Jain
,
J.
Adler
,
T.
Back
,
S.
Petersen
,
D.
Reiman
,
E.
Clancy
,
M.
Zielinski
,
M.
Steinegger
,
M.
Pacholska
,
T.
Berghammer
,
S.
Bodenstein
,
D.
Silver
,
O.
Vinyals
,
A. W.
Senior
,
K.
Kavukcuoglu
,
P.
Kohli
, and
D.
Hassabis
, “
Highly accurate protein structure prediction with alphafold
,”
Nature
596
,
583
589
(
2021
).
22.
J.
Peng
,
N.
Aubry
,
Y.
Li
,
M.
Mei
,
Z.
Chen
, and
W.
Wu
, “
Physics-informed graph convolutional neural network for modeling geometry-adaptive steady-state natural convection
,”
Int. J. Heat Mass Transfer
216
,
124593
(
2023a
).
23.
J.
Peng
,
Y.
Hua
,
Y.
Li
,
Z.
Chen
,
W.
Wu
, and
N.
Aubry
, “
Physics-informed graph convolutional neural network for modeling fluid flow and heat convection
,”
Phys. Fluids
35
,
87117
(
2023b
).
24.
L.
Harsch
and
S.
Riedelbauch
, “
Direct prediction of steady-state flow fields in meshed domain with graph networks
,” arXiv:2105.02575 [physics.flu-dyn] (
2021
).
25.
F.
de Avila Belbute-Peres
,
T. D.
Economon
, and
J. Z.
Kolter
, “
Combining differentiable pde solvers and graph neural networks for fluid flow prediction
,” in
Proceedings of the 37th International Conference on Machine Learning
(
2020
).
26.
W.
Zaremba
,
I.
Sutskever
, and
O.
Vinyals
, “
Recurrent neural network regularization
,” arXiv 1409.2329 (
2014
).
27.
S.
Hochreiter
and
J.
Schmidhuber
, “
Long short-term memory
,”
Neural Comput.
9
,
1735
1780
(
1997
).
28.
J.
Chung
,
C.
Gulcehre
,
K.
Cho
, and
Y.
Bengio
, “
Empirical evaluation of gated recurrent neural networks on sequence modeling
,” arXiv:1412.3555 [cs.NE] (
2014
).
29.
S.
Li
,
S.
Laima
, and
H.
Li
, “
Physics-guided deep learning framework for predictive modeling of bridge vortex-induced vibrations from field monitoring
,”
Phys. Fluids
33
,
037113
(
2021
).
30.
T. P.
Miyanawala
and
R. K.
Jaiman
, “
A novel deep learning method for the predictions of current forces on bluff bodies
,”
International Conference on Offshore Mechanics and Arctic Engineering, Volume 2: CFD and FSI
(
ASME
,
2018
), p.
V002T08A003
.
31.
Y.
Xie
,
C.
Li
,
G.
Tang
, and
F.
Liu
, “
A novel deep interval prediction model with adaptive interval construction strategy and automatic hyperparameter tuning for wind speed forecasting
,”
Energy
216
,
119179
(
2021
).
32.
T.
Li
,
T.
Wu
, and
Z.
Liu
, “
Nonlinear unsteady bridge aerodynamics: Reduced-order modeling based on deep lstm networks
,”
J. Wind Eng. Ind Aerodyn.
198
,
104116
(
2020
).
33.
A.
Vaswani
,
N.
Shazeer
,
N.
Parmar
,
J.
Uszkoreit
,
L.
Jones
,
A. N.
Gomez
,
L.
Kaiser
, and
I.
Polosukhin
, “
Attention is all you need
,” arXiv:1706.03762 [cs.CL] (
2023
).
34.
A.
Dosovitskiy
,
L.
Beyer
,
A.
Kolesnikov
,
D.
Weissenborn
,
X.
Zhai
,
T.
Unterthiner
,
M.
Dehghani
,
M.
Minderer
,
G.
Heigold
,
S.
Gelly
,
J.
Uszkoreit
, and
N.
Houlsby
, “
An image is worth 16x16 words: Transformers for image recognition at scale
,” arXiv:2010.11929 [cs.CV] (
2021
).
35.
Z.
Liu
,
Y.
Lin
,
Y.
Cao
,
H.
Hu
,
Y.
Wei
,
Z.
Zhang
,
S.
Lin
, and
B.
Guo
, “
Swin transformer: Hierarchical vision transformer using shifted windows
,” arXiv:2103.14030 [cs.CV] (
2021
).
36.
X.
HAN
,
H.
Gao
,
T.
Pfaff
,
J.-X.
Wang
, and
L.
Liu
, “
Predicting physics in mesh-reduced space with temporal attention
,” in
International Conference on Learning Representations
(
2022
).
37.
O.
Ronneberger
,
P.
Fischer
, and
T.
Brox
, “
U-net: Convolutional networks for biomedical image segmentation
,” arXiv 1505,04597 (
2015
).
38.
H.
Gao
and
S.
Ji
, “
Graph u-nets
,”
IEEE Trans. Pattern Anal. Mach. Intell.
44
,
4948
4960
(
2022
).
39.
M.
Lino
,
S.
Fotiadis
,
A. A.
Bharath
, and
C. D.
Cantwell
, “
Towards fast simulation of environmental fluid mechanics with multi-scale graph neural networks
,” arXiv 2205.02637 (
2022
).
40.
W.
Liu
,
M.
Yagoubi
, and
M.
Schoenauer
, “
Multi-resolution graph neural networks for pde approximation
,” in
Artificial Neural Networks and Machine Learning – ICANN 2021: 30th International Conference on Artificial Neural Networks
, Bratislava, Slovakia, September 14–17, 2021, Proceedings, Part III (
ICANN
,
Berlin, Heidelberg
,
2021
) p.
151
163
.
41.
A.
Radford
,
J.
Wu
,
R.
Child
,
D.
Luan
,
D.
Amodei
, and
I.
Sutskever
, “
Language models are unsupervised multitask learners
,” (
2019
).
42.
A.
Sanchez-Gonzalez
,
N.
Heess
,
J. T.
Springenberg
,
J.
Merel
,
M.
Riedmiller
,
R.
Hadsell
, and
P.
Battaglia
, “
Graph networks as learnable physics engines for inference and control
,” arXiv:1806.01242 [cs.LG] (
2018
).
43.
K.
Taunk
,
S.
De
,
S.
Verma
, and
A.
Swetapadma
, “
A brief review of nearest neighbor algorithm for learning and classification
,” in
2019 International Conference on Intelligent Computing and Control Systems (ICCS)
(
ICCS
,
2019
) pp.
1255
1260
.
44.
N.
Lei
,
Z.
Li
,
Z.
Xu
,
Y.
Li
, and
X.
Gu
, “
What's the situation with intelligent mesh generation: A survey and perspectives
,”
IEEE Trans. Visual. Comput. Graph.
30
,
4997
5017
(
2024
).
45.
F. R.
Menter
,
M.
Kuntz
, and
R.
Langtry
, “
Ten years of industrial experience with the sst turbulence model
,”
Turbul. heat mass transfer
4
,
625
632
(
2003
).
46.
Z.
Qing-liang
,
G.
Yao-jun
, and
B.
Chun-jin
, “
Deep learning method for flow feature recognition based on dimensionless time history
,”
Eng. Mech.
40
,
17
24
(
2023
).
You do not currently have access to this content.