The flow dynamics around tandem cylinders are complex, with significant engineering implications, especially in applications like high-rise buildings. This study presents a jet flow control framework for two tandem cylinders with a Reynolds number (Re) of 100, based on deep reinforcement learning. We compare two control strategies: (1) a single-agent strategy, where one controller manages the jet flow for two cylinders and (2) a dual-agent strategy, where separate controllers regulate each cylinder independently. The effectiveness of both strategies is evaluated under varying cylinder radii and inter-cylinder spacing. The results show that the single-agent strategy achieves drag reductions of approximately 28% and 40% for the front and rear cylinders, respectively, while the dual-agent strategy results in reductions of about 32% and 31%. While the single-agent strategy is more effective at reducing drag on the rear cylinder, the dual-agent strategy provides superior drag reduction for the larger cylinder and exhibits smaller fluctuations in drag across all conditions.

1.
M.
Zhang
and
L.
He
, “
Combining shaping and flow control for aerodynamic optimization
,”
AIAA J.
53
(
4
),
888
901
(
2015
).
2.
B. L.
Storms
and
C. S.
Jang
, “
Lift enhancement of an airfoil using a gurney flap and vortex generators
,”
J. Aircr.
31
(
3
),
542
547
(
1994
).
3.
D. T. Y.
Nakafuji
,
C. P.
Van Dam
,
R. L.
Smith
, and
S. D.
Collins
, “
Active load control for airfoils using microtabs
,”
J. Sol. Energy Eng.
123
(
4
),
282
289
(
2001
).
4.
S.
Muddada
and
B. S. V.
Patnaik
, “
An active flow control strategy for the suppression of vortex structures behind a circular cylinder
,”
Eur. J. Mech. B
29
(
2
),
93
104
(
2010
).
5.
D.
Gao
,
H.
Meng
,
Y.
Huang
,
G.
Chen
, and
W. L.
Chen
, “
Active flow control of the dynamic wake behind a square cylinder using combined jets at the front and rear stagnation points
,”
Phys. Fluids
33
(
4
),
047101
(
2021
).
6.
L.
Zhou
,
H.
Li
,
T. K. T.
Tse
,
X.
He
,
G. Y. C.
Maceda
, and
H.
Zhang
, “
Sensitivity-aided active control of flow past twin cylinders
,”
Int. J. Mech. Sci.
242
,
108013
(
2023
).
7.
Z.
Deng
,
D. L.
Gao
,
G. B.
Chen
, and
W. L.
Chen
, “
Active wake control of flow past a circular cylinder with slot jet
,”
J. Aerosp. Eng.
34
(
4
),
4021033
(
2021
).
8.
H.
Zhang
,
B.-c.
Fan
,
Z.-h.
Chen
, and
H.-z.
Li
, “
Numerical study of the suppression mechanism of vortex-induced vibration by symmetric Lorentz forces
,”
J. Fluids Struct.
48
(
2004
),
62
80
(
2014
).
9.
H.
Zhang
,
B.-c.
Fan
, and
Z.-h.
Chen
, “
Computations of optimal cylinder flow control in weakly conductive fluids
,”
Comput. Fluids
39
(
8
),
1261
1266
(
2010
).
10.
M.
Samimy
,
J.-H.
Kim
,
J.
Kastner
,
I.
Adamovich
, and
Y.
Utkin
, “
Active control of high-speed and high-Reynolds-number jets using plasma actuators
,”
J. Fluid Mech.
578
,
305
330
(
2007
).
11.
J.
Little
and
M.
Samimy
, “
High-lift airfoil separation with dielectric barrier discharge plasma actuation
,”
AIAA J.
48
(
12
),
2884
2898
(
2010
).
12.
O.
Semeraro
,
S.
Bagheri
,
L.
Brandt
, and
D. S.
Henningson
, “
Transition delay in a boundary layer flow using active control
,”
J. Fluid Mech.
731
,
288
311
(
2013
).
13.
M.
Samimy
,
N.
Webb
, and
M.
Crawley
, “
Excitation of free shear-layer instabilities for high speed flow control
,”
AIAA J.
56
(
5
),
1770
1791
(
2018
).
14.
D.
Gao
,
G.
Chen
,
W.
Chen
,
Y.
Huang
, and
H.
Li
, “
Active control of circular cylinder flow with windward suction and leeward blowing
,”
Exp. Fluids
60
(
2
),
26
(
2019
).
15.
S.
Li
,
Z.
Luo
,
X.
Deng
,
W.
Peng
, and
Z.
Liu
, “
Experimental investigation on active control of flow around a finite-length square cylinder using dual synthetic jet
,”
J. Wind Eng. Ind. Aerodyn.
210
,
104519
(
2021
).
16.
H.
Akbıyık
,
Y. E.
Akansu
, and
H.
Yavuz
, “
Active control of flow around a circular cylinder by using intermittent DBD plasma actuators
,”
Flow Meas. Instrum.
53
,
215
220
(
2017
).
17.
X.
Zhang
,
Y.
Huang
, and
H. X.
Li
, “
Flow control over a circular cylinder using plasma actuators
,”
Chin. J. Theor. Appl. Mech.
50
(
6
),
1396
1405
(
2018
).
18.
A.
Chakraborty
,
A. G.
Roy
,
P.
Sundaram
,
A.
Sengupta
, and
T. K.
Sengupta
, “
Controlling transonic shock–boundary layer interactions over a natural laminar flow airfoil by vortical and thermal excitation
,”
Phys. Fluids
34
(
8
),
085124
(
2022
).
19.
H. L.
Bai
,
Y.
Zhou
,
W. G.
Zhang
,
S. J.
Xu
,
Y.
Wang
, and
R. A.
Antonia
, “
Active control of a turbulent boundary layer based on local surface perturbation
,”
J. Fluid Mech.
750
,
316
354
(
2014
).
20.
Z.
Tang
,
J.
Xu
,
S.
Wang
, and
H. F.
Zhang
, “
Optimized unidirectional and angle-insensitive ultra-broadband absorber based on layered graphene photonic structure
,”
Diamond Relat. Mater.
137
,
110091
(
2023
).
21.
Z.
Tang
,
S.-Y.
Li
,
J.
Xu
, and
H.-F.
Zhang
, “
Tunable Janus absorptive frequency-selective reflector with octave frequency absorption
,”
Opt. Lett.
48
(
16
),
4416
(
2023
).
22.
T.
Johannink
,
S.
Bahl
,
A.
Nair
,
J.
Luo
,
A.
Kumar
,
M.
Loskyll
,
J. A.
Ojea
,
E.
Solowjow
, and
S.
Levine
, “
Residual reinforcement learning for robot control
,” in
International Conference on Robotics and Automation (ICRA)
(
IEEE
,
2019
), pp.
6023
6029
.
23.
D.
Guo
,
L.
Tang
,
X.
Zhang
, and
Y. C.
Liang
, “
Joint optimization of handover control and power allocation based on multi-agent deep reinforcement learning
,”
IEEE Trans. Veh. Technol.
69
(
11
),
13124
13138
(
2020
).
24.
M.
Brittain
and
P.
Wei
, “
Autonomous air traffic controller: A deep multi-agent reinforcement learning approach
,” arXiv:1905.01303 (
2019
).
25.
S. L.
Brunton
and
B. R.
Noack
, “
Closed-loop turbulence control: Progress and challenges
,”
Appl. Mech. Rev.
67
(
5
),
050801
(
2015
).
26.
J.
Rabault
,
M.
Kuchta
,
A.
Jensen
,
U.
Réglade
, and
N.
Cerardi
, “
Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control
,”
J. Fluid Mech.
865
,
281
302
(
2019
).
27.
M.
Tokarev
,
E.
Palkin
, and
R.
Mullyadzhanov
, “
Deep reinforcement learning control of cylinder flow using rotary oscillations at low Reynolds number
,”
Energies
13
(
22
),
5920
(
2020
).
28.
R.
Paris
,
S.
Beneddine
, and
J.
Dandois
, “
Robust flow control and optimal sensor placement using deep reinforcement learning
,”
J. Fluid Mech.
913
,
A25
(
2021
).
29.
D.
Fan
,
L.
Yang
,
Z.
Wang
,
M. S.
Triantafyllou
, and
G. E.
Karniadakis
, “
Reinforcement learning for bluff body active flow control in experiments and simulations
,”
Proc. Natl. Acad. Sci. U. S. A.
117
(
42
),
26091
26098
(
2020
).
30.
H.
Tang
,
J.
Rabault
,
A.
Kuhnle
,
Y.
Wang
, and
T.
Wang
, “
Robust active flow control over a range of Reynolds numbers using an artificial neural network trained through deep reinforcement learning
,”
Phys. Fluids
32
(
5
),
53605
(
2020
).
31.
S.
Shimomura
,
S.
Sekimoto
,
A.
Oyama
,
K.
Fujii
, and
H.
Nishida
, “
Closed-loop flow separation control using the deep Q network over airfoil
,”
AIAA J.
58
(
10
),
4260
4270
(
2020
).
32.
F.
Ren
,
J.
Rabault
, and
H.
Tang
, “
Applying deep reinforcement learning to active flow control in weakly turbulent conditions
,”
Phys. Fluids
33
(
3
),
37121
(
2021
).
33.
M.
Schäfer
,
S.
Turek
,
F.
Durst
,
E.
Krause
, and
R.
Rannacher
, “
Benchmark computations of laminar flow around a cylinder
,” in
Flow Simulation with High-Performance Computers II
(
Vieweg+Teubner Verlag
,
1996
). pp.
547
566
.
34.
J.
Schulman
,
F.
Wolski
,
P.
Dhariwal
,
A.
Radford
, and
O.
Klimov
, “
Proximal policy optimization algorithms
,” arXiv:1707.06347 (
2017
).
You do not currently have access to this content.