An accurate prediction of the liquid holdup and pressure drop using the one-dimensional mechanistic slug flow models requires an accurate estimation of slug void fraction. Considerable theoretical and experimental research has been conducted in the literature to study the slug void fraction. However, almost, all these studies primarily focus on the vertical upward and horizontal slug flows. In this study, we investigated experimentally and theoretically the slug void fraction in vertical downward flow. A series of experiments for measuring the slug void fraction in air–water flow using the conductance probe technique with a pipe diameter of 34 mm were conducted. The relationship between the measured slug void fraction and the mixture velocity revealed the presence of three distinct zones. This observed behavior, which differs from what has been reported in vertical upward flow, was explained through a mechanistic model that considers the varying velocities of liquid slugs, small gas bubbles, and Taylor bubbles. A new empirical predictive model based on the liquid-to-gas superficial velocities ratio and input liquid fraction was proposed. The performance of the proposed model was compared to existing models and demonstrated the lowest error. It showed a good performance with an average relative error of −3.43% and an average absolute relative error of 12.97%. The assessment study of the existing models developed for vertical upward flow showed that they failed to predict correctly the slug void fraction in vertical downward flow.

1.
Abdulkadir
,
M.
,
Mbalisigwe
,
U. P.
,
Zhao
,
D.
,
Hernandez-Perez
,
V.
,
Azzopardi
,
B. J.
, and
Tahir
,
S.
, “
Characteristics of churn and annular flows in a large diameter vertical riser
,”
Int. J. Multiphase Flow
113
,
250
263
(
2019
).
2.
Abdul-Majeed
,
G. H.
, “
Liquid slug holdup in horizontal and slightly inclined two-phase slug flow
,”
J. Pet. Sci. Eng.
27
(
1–2
),
27
32
(
2000
).
3.
Abdul-Majeed
,
G. H.
and
Al-Mashat
,
A. M.
, “
A unified correlation for predicting slug liquid holdup in viscous two-phase flow for pipe inclination from horizontal to vertical
,”
SN Appl. Sci.
1
(
1
),
1
25
(
2019
).
4.
Abdul-Majeed
,
G. H.
and
Firouzi
,
M.
, “
The suitability of the dimensionless terms used in correlating slug liquid holdup with flow parameters in viscous two-phase flows
,”
Int. Commun. Heat Mass Transfer
108
,
104323
(
2019
).
5.
Abdul-Majeed
,
G. H.
,
Kadhim
,
F. S.
,
Almahdawi
,
F. H.
,
Al-Dunainawi
,
Y.
,
Arabi
,
A.
, and
Al-Azzawi
,
W. K.
, “
Application of artificial neural network to predict slug liquid holdup
,”
Int. J. Multiphase Flow
150
,
104004
(
2022
).
6.
Ali
,
A. A.
,
Abdul-Majeed
,
G. H.
, and
Al-Sarkhi
,
A.
, “
Review of multiphase flow models in the petroleum engineering: Classifications, simulator types, and applications
,”
Arab. J. Sci. Eng.
(published online) (
2024
).
7.
Al-Ruhaimani
,
F.
, “
Experimental analysis and theoretical modeling of high liquid viscosity two-phase upward vertical pipe flow
,” Ph.D. dissertation (
The University of Tulsa
,
Tulsa, OK
,
2015
).
8.
Al-Sarkhi
,
A.
and
Fdleseed
,
A.
, “
Unmasking the mystery: The path to accurate liquid slug holdup prediction
,”
Geoenergy Sci. Eng.
243
,
213331
(
2024
).
9.
Al-Sarkhi
,
A.
,
Sarica
,
C.
, and
Pereyra
,
E.
, “
Novel correlations for the liquid holdup in a gas-liquid slug flow
,”
Geoenergy Sci. Eng.
237
,
212825
(
2024
).
10.
Arabi
,
A.
,
Höhn
,
R. L.
,
Pallares
,
J.
, and
Stiriba
,
Y.
, “
Practical aspects of multiphase slug frequency: An overview
,”
Can. J. Chem. Eng.
(published online) (
2024
).
11.
Arabi
,
A.
,
Zenati
,
Y.
,
Legrand
,
J.
, and
Si-Ahmed
,
E. K.
, “
Sub-regimes of horizontal gas–liquid intermittent flow: State-of-the-art and future challenges
,”
Exp. Therm. Fluid Sci.
160
,
111281
(
2025
).
12.
Barnea
,
D.
and
Brauner
,
N.
Holdup of the liquid slug in two phase intermittent flow
,”
Int. J. Multiphase Flow
11
(
1
),
43
49
(
1985
).
13.
Bhagwat
,
S. M.
and
Ghajar
,
A. J.
, “
Similarities and differences in the flow patterns and void fraction in vertical upward and downward two- phase flow
,”
Exp. Therm. Fluid Sci.
39
,
213
227
(
2012
).
14.
Bordalo
,
S. N.
,
Morooka
,
C. K.
, and
Trigo
,
C. C.
, “
An experimental study of oscillations induced by two-phase slug flows of water and air on a flexible catenary shaped submerged pipe
,”
Geoenergy Sci. Eng.
239
,
212866
(
2024
).
15.
Boutaghane
,
A.
,
Arabi
,
A.
,
Ibrahim-Rassoul
,
N.
,
Al-Sarkhi
,
A.
, and
Azzi
,
A.
, “
Analysis, comparison, and discussion on the utilization of the existing slug liquid holdup models to predict the horizontal gas-liquid plug-to-slug flow transition
,”
J. Energy Res. Technol.
145
(
7
),
074501
(
2023
).
16.
Bouyahiaoui
,
H.
,
Azzi
,
A.
,
Zeghloul
,
A.
,
Hasan
,
A. H.
,
Al-Sarkhi
,
A.
, and
Parsi
,
M.
, “
Vertical upward and downward churn flow: Similarities and differences
,”
J. Nat. Gas Sci. Eng.
73
,
103080
(
2020
).
17.
Bouyahiaoui
,
H.
,
Azzi
,
A.
,
Zeghloul
,
A.
,
Hasan
,
A.
, and
Berrouk
,
A. S.
, “
Experimental investigation of a vertically downward two-phase air-water slug flow
,”
J. Pet. Sci. Eng.
162
,
12
21
(
2018
).
18.
Bouyahiaoui
,
H.
,
Saidj
,
F.
,
Arabi
,
A.
,
Al-Sarkhi
,
A.
, and
Azzi
,
A.
, “
Vertically downward gas-liquid flow: Void fraction and pressure drop
,”
Int. J. Multiphase Flow
172
,
104711
(
2024
).
19.
Brauner
,
N.
and
Ullmann
,
A.
, “
Modelling of gas entrainment from Taylor bubbles. Part A: Slug flow
,”
Int. J. Multiphase Flow
30
(
3
),
239
272
(
2004
).
20.
Coney
,
M.
, “
The theory and application of conductance probes for the measurement of liquid film thickness in two-phase flow
,”
J. Phys. E
6
(
9
),
903
910
(
1973
).
21.
Dong
,
C.
,
Qi
,
R.
, and
Zhang
,
L.
, “
Flow and heat transfer for a two-phase slug flow in horizontal pipes: A mechanistic model
,”
Phys. Fluids
33
(
3
),
034117
(
2021
).
22.
Du
,
Y.
,
Zhu
,
J.
,
Han
,
X.
,
Fu
,
M.
,
Li
,
M.
, and
Shen
,
Y.
, “
Gas state equation and flow mechanism of gas–liquid two-phase flow in airlift pump system
,”
Phys. Fluids
36
(
5
),
055142
(
2024
).
23.
Fabre
,
J.
and
Figueroa-Espinoza
,
B.
, “
Taylor bubble rising in a vertical pipe against laminar or turbulent downward flow: Symmetric to asymmetric shape transition
,”
J. Fluid Mech.
755
,
485
502
(
2014
).
24.
Felizola
,
H.
, “
Slug flow in extended reach directional wells
,” M.Sc. thesis (
The University of Tulsa
,
Tulsa, OK
,
1992
).
25.
Fershtman
,
A.
,
Babin
,
V.
,
Barnea
,
D.
, and
Shemer
,
L.
, “
On shapes and motion of an elongated bubble in downward liquid pipe flow
,”
Phys. Fluids
29
(
11
),
112103
(
2017
).
26.
Fossa
,
M.
, “
Design and performance of a conductance probe for measuring the liquid fraction in two-phase gas-liquid flows
,”
Flow Meas. Instrum.
9
,
103
109
(
1998
).
27.
Ghendour
,
N.
,
Azzi
,
A.
,
Meribout
,
M.
, and
Zeghloul
,
A.
, “
Modeling and design of a new conductance probe for gas void fraction measurement of two-phase flow through annulus
,”
Flow Meas. Instrum.
82
,
102078
(
2021
).
28.
Ghendour
,
N.
,
Meribout
,
M.
, and
Azzi
,
A.
, “
Review of measurement techniques for void fraction of two-phase flow through annulus
,”
Measurement
165
,
108196
(
2020
).
29.
Goda
,
H.
,
Hibiki
,
T.
,
Kim
,
S.
,
Ishii
,
M.
, and
Uhle
,
J.
, “
Drift-flux model for downward two-phase flow
,”
Int. J. Heat Mass Transfer
46
(
25
),
4835
4844
(
2003
).
30.
Gomez
,
L. E.
,
Shoham
,
O.
, and
Taitel
,
Y.
, “
Prediction of slug liquid holdup: Horizontal to upward vertical flow
,”
Int. J. Multiphase Flow
26
(
3
),
517
521
(
2000
).
31.
Gregory
,
G. A.
,
Nicholson
,
M. K.
, and
Aziz
,
K.
, “
Correlation of the liquid volume fraction in the slug for horizontal gas-liquid slug flow
,”
Int. J. Multiphase Flow
4
(
1
),
33
39
(
1978
).
32.
Hasan
,
A. H.
,
Mohammed
,
S. K.
,
Pioli
,
L.
,
Hewakandamby
,
B. N.
, and
Azzopardi
,
B. J.
, “
Gas rising through a large diameter column of very viscous liquid: Flow patterns and their dynamic characteristics
,”
Int. J. Multiphase Flow
116
,
1
14
(
2019
).
33.
Hasan
,
A. H.
,
Mohammed
,
S. K.
,
Hewakandamby
,
B.
, and
Azzopardi
,
B.
, “
Experimental study of the three-dimensional interfacial wave structure of freely falling liquid film in a vertical large pipe diameter
,”
Chem. Eng. Res. Des.
169
,
66
76
(
2021
).
34.
Höhn
,
R. L.
,
Arabi
,
A.
,
Stiriba
,
Y.
, and
Pallares
,
J.
, “
A review of the measurement of the multiphase slug frequency
,”
Processes
12
(
11
),
2500
(
2024
).
35.
Holagh
,
S. G.
and
Ahmed
,
W. H.
, “
Critical review of vertical gas-liquid slug flow: An insight to better understand flow hydrodynamics' effect on heat and mass transfer characteristics
,”
Int. J. Heat Mass Transfer
225
,
125422
(
2024
).
36.
Issa
,
R. I.
,
Bonizzi
,
M.
, and
Barbeau
,
S.
, “
Improved closure models for gas entrainment and interfacial shear for slug flow modelling in horizontal pipes
,”
Int. J. Multiphase Flow
32
(
10–11
),
1287
1293
(
2006
).
37.
Kren
,
J.
,
Frederix
,
E. M. A.
,
Tiselj
,
I.
, and
Mikuž
,
B.
, “
Numerical study of Taylor bubble breakup in counter-current flow using large eddy simulation
,”
Phys. Fluids
36
(
2
),
023311
(
2024
).
38.
Lizarraga-Garcia
,
E.
,
Buongiorno
,
J.
, and
Al-Safran
,
E.
, “
Computational fluid dynamics (CFD) simulations of Taylor bubbles in vertical and inclined pipes with upward and downward liquid flow
,”
SPE J.
26
(
6
),
3832
3847
(
2021
).
39.
Lu
,
X.
and
Prosperetti
,
A.
, “
Axial stability of Taylor bubbles
,”
J. Fluid Mech.
568
,
173
192
(
2006
).
40.
Maldonado
,
P. A.
,
Rodrigues
,
C. C.
,
Mancilla
,
E.
,
dos Santos
,
E. N.
,
da Fonseca Junior
,
R.
,
Neto
,
M. A. M.
,
da Silva
,
J. M.
, and
Morales
,
R. E.
, “
Spatial distribution of void fraction in the liquid slug in vertical gas-liquid slug flow
,”
Exp. Therm. Fluid Sci.
151
,
111093
(
2024
).
41.
Martin
,
C. S.
, “
Vertically downward two-phase slug flow
,”
J. Fluids Eng.
98
(
4
),
715
722
(
1976
).
42.
Nicklin
,
D. J.
, “
Two-phase flow in vertical tube
,”
Trans. Inst. Chem. Eng.
40
,
61
68
(
1962
).
43.
Nwanwe
,
C. C.
,
Duru
,
U. I.
,
Anyadiegwu
,
C. I. C.
,
Ekejuba
,
A. I.
,
Onwukwe
,
S. I.
,
Nwachukwu
,
A. N.
, and
Okonkwo
,
B. U.
, “
An artificial neural network visible mathematical model for predicting slug liquid holdup in low to high viscosity multiphase flow for horizontal to vertical pipes
,”
J. Eng. Appl. Sci.
71
(
1
),
194
(
2024
).
44.
Qiao
,
S.
,
Mena
,
D.
, and
Kim
,
S.
, “
Inlet effects on vertical-downward air–water two-phase flow
,”
Nucl. Eng. Des.
312
,
375
388
(
2017
).
45.
Saidj
,
F.
,
Hasan
,
A.
,
Bouyahiaoui
,
H.
,
Zeghloul
,
A.
, and
Azzi
,
A.
, “
Experimental study of the characteristics of an upward two-phase slug flow in a vertical pipe
,”
Prog. Nucl. Energy
108
,
428
437
(
2018
).
46.
Shi
,
X.
,
Tan
,
C.
,
Dong
,
F.
,
dos Santos
,
E. N.
, and
da Silva
,
M. J.
, “
Conductance sensors for multiphase flow measurement: A review
,”
IEEE Sens. J.
21
(
11
),
12913
12925
(
2021
).
47.
Soto-Cortes
,
G.
,
Pereyra
,
E.
, and
Sarica
,
C.
, “
Unified closure relationship for slug liquid holdup
,”
Can. J. Chem. Eng.
103
,
442
(
2025
).
48.
Sylvester
,
N. D.
, “
A mechanistic model for two-phase vertical slug flow in pipes
,”
J. Energy Res. Technol.
109
(
4
),
206
(
1987
).
49.
Tiselj
,
I.
,
Kren
,
J.
,
Mikuž
,
B.
,
Nop
,
R.
,
Burlot
,
A.
, and
Hamrit
,
G.
, “
Experimental and numerical study of Taylor bubble in counter-current turbulent flow
,”
Arab. J. Sci. Eng.
(published online) (
2024
).
50.
Tsochatzidis
,
N.
,
Karapantsios
,
T.
,
Kostoglou
,
M.
, and
Karabelas
,
A.
, “
A conductance probe for measuring liquid fraction in pipes and packed beds
,”
Int. J. Multiphase Flow
18
,
653
667
(
1992
).
51.
Usui
,
K.
and
Sato
,
K.
, “
Vertically downward two-phase flow, (I)
,”
J. Nucl. Sci. Technol.
26
(
7
),
670
680
(
1989
).
52.
Zeghloul
,
A.
,
Messilem
,
A.
,
Ghendour
,
N.
,
Al-Sarkhi
,
A.
,
Azzi
,
A.
, and
Hasan
,
A.
, “
Theoretical study and experimental measurement of the gas liquid two-phase flow through a vertical Venturi meter
,”
Proc. Inst. Mech. Eng., Part C
235
(
9
),
1567
1584
(
2021
).
53.
Zhang
,
W.
,
Shao
,
D.
,
Yan
,
Y.
,
Liu
,
S.
, and
Wang
,
T.
, “
Experimental investigations into the transient behaviours of CO2 in a horizontal pipeline during flexible CCS operations
,”
Int. J. Greenhouse Gas Control
79
,
193
199
(
2018
).
54.
Zhao
,
D.
,
Omar
,
R.
,
Abdulkadir
,
M.
,
Abdulkareem
,
L. A.
,
Azzi
,
A.
,
Saidj
,
F.
,
Hernandez Perez
,
V.
,
Hewakandamby
,
N. B.
, and
Azzopardi
,
B. J.
, “
The control and maintenance of desired flow patterns in bends of different orientations
,”
Flow Meas. Instrum.
53
,
230
242
(
2017
).
You do not currently have access to this content.