To investigate the energy dissipation mechanisms within the pump and improve the computational accuracy of the solid–liquid flow numerical simulations, in this study, an improved CFD-DEM (Computational Fluid Dynamics - Discrete Element Method) method has been presented. First, the improved method of CFD-DEM is introduced, which mainly considers the turbulent dissipation of particles in the near-wall region and velocity field reconstruction. Then, the simulation results before and after the method's enhancement are compared. Finally, the analysis of the energy characteristics of the liquid phase flow field in the solid–liquid flow is conducted. Research shows that the modified CFD-DEM method significantly improves the accuracy of the particle distribution predictions, with the numerical results for head and efficiency being much closer to experimental values. In the high-speed regions of the impeller flow field, primarily located behind the pressure side of the blades, the liquid phase flow velocity and pressure fluctuations are less affected by changes in solid phase concentration. In the fluid region of the centrifugal pump, the energy loss caused by entropy production is significantly concentrated in the volute and impeller regions. Specifically, the entropy production dissipation in the volute region accounts for the substantial portion of the total entropy production, approximately 67%–68%, while the entropy production dissipation in the impeller region accounts for about 19.7%–20.4%. As the solid phase concentration increases, the energy dissipation within the pump gradually rises, and the total vorticity at the impeller inlet also increases correspondingly, with the vorticity distribution being related to the number of blades. The findings provide a reference for further exploring solid–liquid flow within centrifugal pumps.

1.
Y. L.
Wang
,
P. X.
Yao
,
W.
Shi
, and
Y. J.
Zhang
, “
Wear resistance characteristics of biomimetic volute of slurry pump based on surface morphology of Scapharca subcrenata
,”
J. Mech. Electr. Eng.
41
(
11
),
2119
2128
(
2024
).
2.
H. T.
Zhang
, “
Analysis of abrasion characteristics of double-suction pumps under sandy flow
,”
Mech. Manage. Dev.
39
(
2
),
23
25
(
2024
).
3.
H. Z.
Yao
,
W. W.
Song
,
L. H.
You
, and
S. J.
Lv
, “
Research on the internal flow characteristics of solid-liquid phases in the centrifugal pump by the bent pipe inlet flow
,”
China Rural Water Hydropower
11
,
202
209
(
2023
).
4.
Z. C.
Zhang
,
Y. P.
Li
,
J. L.
Zhang
, and
D. X.
Chen
, “
Influences of three types of sediment diffusion coefficient model on the calculation of solid-liquid flow in double suction centrifugal pump
,”
Trans. Chin. Soc. Agric. Eng.
39
(
7
),
77
88
(
2023
).
5.
C.
Kang
,
Q.
Cao
,
S.
Teng
,
H. X.
Liu
, and
K. J.
Ding
, “
Wear characteristics of a centrifugal pump transporting solid–liquid mixture: An experimental and numerical study
,”
Ain Shams Eng. J.
15
(
1
),
102277
(
2024
).
6.
G.
Peng
,
X.
Huang
,
L.
Zhou
,
G.
Zhou
, and
H.
Zhou
, “
Solid-liquid flow and wear analysis in a large-scale centrifugal slurry pump
,”
Eng. Fail. Anal.
114
,
104602
(
2020
).
7.
S.
Huang
,
X.
Su
, and
G.
Qiu
, “
Transient numerical simulation for solid-liquid flow in a centrifugal pump by DEM-CFD coupling
,”
Eng. Appl. Comput. Fluid Mech.
9
(
1
),
411
418
(
2015
).
8.
R.
Tarodiya
and
B. K.
Gandhi
, “
Numerical simulation of a centrifugal slurry pump handling solid-liquid mixture: Effect of solids on flow field and performance
,”
Adv. Powder Technol.
30
(
10
),
2225
2239
(
2019
).
9.
Q.
Hu
,
J.
Chen
,
L.
Deng
,
Y.
Kang
, and
S.
Liu
, “
CFD-DEM simulation of backflow blockage of deep-sea multistage pump
,”
J. Mar. Sci. Eng.
9
(
9
),
987
(
2021
).
10.
L.
Deng
,
Q.
Hu
,
J.
Chen
,
Y.
Kang
, and
S.
Liu
, “
Particle distribution and motion in six-stage centrifugal pump by means of slurry experiment and CFD-DEM simulation
,”
J. Mar. Sci. Eng.
9
(
7
),
716
(
2021
).
11.
C.
Tang
,
Y. C.
Yang
,
P. Z.
Liu
, and
Y. J.
Kim
, “
Prediction of abrasive and impact wear due to multi-shaped particles in a centrifugal pump via CFD-DEM coupling method
,”
Energies
14
(
9
),
2391
(
2021
).
12.
C.
Tang
and
Y. J.
Kim
, “
CFD-DEM simulation for the distribution and motion feature of solid particles in single-channel pump
,”
Energies
13
(
19
),
4988
(
2020
).
13.
L. W.
Deng
,
H. N.
Lu
,
S. J.
Liu
,
Q.
Hu
,
J. M.
Yang
,
Y. J.
Kang
, and
P. F.
Sun
, “
Particle anti-accumulation design at impeller suction of deep-sea mining pump and evaluation by CFD-DEM simulation
,”
Ocean Eng.
279
,
114598
(
2023
).
14.
H. Y.
Wang
,
F. Y.
Huang
,
M.
Fazli
,
S. B.
Kuang
, and
A. B.
Yu
, “
CFD-DEM investigation of centrifugal slurry pump with polydisperse particle feeds
,”
Powder Technol.
447
,
120204
(
2024
).
15.
Y.
Li
,
D. X.
Liu
,
B. L.
Cui
,
Z.
Lin
,
Y. H.
Zheng
, and
O.
Ishnazarov
, “
Studying particle transport characteristics in centrifugal pumps under external vibration using CFD-DEM simulation
,”
Ocean Eng.
301
,
117538
(
2024
).
16.
Y. K.
Liao
,
K.
Cheng
,
W. H.
Sun
, and
Y.
Zhao
, “
Study on pumping wear characteristics of concrete pipeline based on CFD-DEM coupling
,”
Sci. Rep.
13
(
1
),
16119
(
2023
).
17.
L. L.
Ji
,
R. K.
Agarwal
,
K.
Kan
,
R.
Tao
,
Y.
Yang
, and
A.
Presas
, “
Editorial: Optimal design and efficiency improvement of fluid machinery and systems
,”
Front. Energy Res.
11
,
1238721
(
2023
).
18.
L. L.
Ji
,
Y. K.
Li
,
W.
Li
,
S.
Li
,
Y. F.
Yang
,
Y.
Yang
,
H. M.
Li
, and
R. K.
Agarwal
, “
Investigation of vortex dynamics diagnosis in the stall state of mixed-flow pump with blade gap size effect
,”
J. Braz. Soc. Mech. Sci. Eng.
45
(
8
),
395
(
2023
).
19.
L. L.
Ji
,
S.
Li
,
W.
Li
,
Y. X.
Huang
,
W. D.
Shi
,
Y.
Yang
,
H. M.
Li
,
Y. F.
Yang
, and
R. K.
Agarwal
, “
Study on passive suppression method of rotating stall in mixed-flow pump: Using different impeller rim structures
,”
Proc. Inst. Mech. Eng., Part A
237
(
5
),
965
984
(
2023
).
20.
M.
Gölcü
,
Y.
Pancar
, and
Y.
Sekmen
, “
Energy saving in a deep well pump with splitter blade
,”
Energy Convers. Manage.
47
(
5
),
638
651
(
2006
).
21.
X.
Luo
,
S. F.
Gao
,
Y. J.
Pei
,
X. H.
Xiao
,
L. H.
Wang
,
Z. Z.
Xue
, and
C.
Yang
, “
Energy conversion characteristics of an in-line mixing pump in solid–liquid two-phase dynamic mixing
,”
Arab. J. Sci. Eng.
48
(
12
),
16953
16971
(
2023
).
22.
W.
Li
,
W.
Pu
,
L. L.
Ji
,
Q. Y.
Yang
,
X. R.
He
, and
R. K.
Agarwal
, “
Mechanism of the impact of sediment particles on energy loss in mixed-flow pumps
,”
Energy
304
,
132166
(
2024
).
23.
H. Y.
Zhang
,
Research on the Pass Performance and Wear of Solid-Liquid Two-Phase Centrifugal Pump
(
Zhejiang Sci-Tech University
,
2023
).
24.
Y. Q.
Wang
,
X. H.
Su
, and
Z. C.
Zhu
, “
Characteristics of flow field and coarse particle motion in multiphase pump for deep-sea mining
,”
J. Drain. Irrig. Mach. Eng.
40
(
8
),
800
806
(
2022
).
25.
X. W.
Shi
,
W. J.
Ding
,
C. J.
Xu
,
F. W.
Xie
, and
Z. Z.
Tian
, “
Numerical investigation of inlet section structure effect on wear characteristic of particle condition in centrifugal slurry pump by CFD-DEM coupling
,”
Part. Sci. Technol.
41
(
6
),
834
843
(
2023
).
26.
T. H.
Shih
,
W. W.
Liou
,
A.
Shabbir
, et al., “
A new k-ε eddy viscosity model for high Reynolds number turbulent flows
,”
Comput. Fluids
24
(
3
),
227
238
(
1995
).
27.
A. N.
Zarya
, “
The effect on the solid phase of a slurry on the head developed by a centrifugal pump
,”
Fluid Mech.-Sov. Res.
4
(
4
),
144
154
(
1975
).
28.
T.
Cader
,
O.
Masbernat
, and
M. C.
Roco
, “
Two-phase velocity distributions and overall performance of a centrifugal slurry pum
,”
J. Fluids Eng.
116
(
2
),
316
(
1994
).
29.
L. C.
Fairbank
, “
Pipe-Line flow of solids in suspension: A sysmposium: Effect on the characteristics of centrifugal pumps
,”
Trans. Am. Soc. Civ. Eng.
107
(
1
),
1564
1575
(
1942
).
30.
B. C.
Shi
,
J. J.
Wei
, and
Y.
Zhang
, “
A novel experimental facility for measuring internal flow of solid-liquid flow in a centrifugal pump by PIV
,”
Int. J. Multiphase Flow
89
,
266
276
(
2017
).
31.
Y.
Sha
,
Y.
Zhu
,
P.
Wu
,
Q. P.
Li
,
Y.
Wang
, and
C. X.
Li
, “
Hydrotransport test with variable rapeseed concentration and flow field numerical simulation of vortex pump
,”
Trans. Chin. Soc. Agric. Mach.
50
(
5
),
173
180
(
2019
).
32.
W.
Pu
,
L. L.
Ji
,
W.
Li
,
Q. Y.
Yang
,
Z. B.
Liu
,
Y.
Yang
,
H. M.
Li
,
W.
Huang
, and
R. K.
Agarwal
, “
Experimental study on the unsteady evolution mechanism of centrifugal pump impeller wake under solid–liquid two-phase conditions: Impact of particle concentration
,”
Phys. Fluids
36
(
11
),
113327
(
2024
).
33.
G.
Yang
,
Study on Hydraulic Components Matching Optimization and Stall Characteristics of Large Vertical Centrifugal Pump
(
Jiangsu University
,
2022
).
34.
L. G.
Sun
,
P. C.
Guo
, and
X. Q.
Luo
, “
Visualization investigation into precessing vortex rope in Francis turbine draft tube based on several vortex identification criterions
,”
Chin. J. Hydrodyn.
34
(
6
),
779
787
(
2019
).
You do not currently have access to this content.