When a buoyant bubble rises through a suspension of hydrophobic particles, particles colliding with the bubble generally will stick to it and are thus carried upward with the bubble. Here, we use fully resolved numerical simulations to examine the rate of capture by a single bubble in a domain containing a particle suspension. The bubble is followed for a long enough time to gather several particles, and we examine the effect of the governing parameters on the rate of accumulation for modest bubble Reynolds numbers. The results show that the strongest dependency is on the volume fraction, where the capture rate of particles decreases rapidly as particles accumulating on the bubble prevent the attachment of other particles. The capture efficiency decreases slightly as the bubbles become more deformable since particles at the bottom of the bubble elongate it, decrease its cross-sectional area, and increases with particle size. The effect of other parameters is small, for the parameter ranges simulated here.

1.
Anzoom
,
S. J.
,
Bournival
,
G.
, and
Ata
,
S.
, “
Coarse particle flotation: A review
,”
Miner. Eng.
206
,
108499
(
2024
).
2.
Baltussen
,
M.
,
Kuipers
,
J.
, and
Deen
,
N.
, “
Direct numerical simulation of effective drag in dense gas-liquid-solid three-phase flows
,”
Chem. Eng. Sci.
158
,
561
568
(
2017
).
3.
Bascur
,
O.
, “
An interactive dynamic flotation model framework
,” in
Developments in Mineral Processing
(
Elsevier
,
2000
), Vol.
13
, p.
C8a–21
C8a–31
.
4.
Bloom
,
F.
and
Heindel
,
T.
, “
Mathematical modelling of the flotation deinking process
,”
Math. Comput. Modell.
25
,
13
58
(
1997
).
5.
Bogner
,
S.
,
Harting
,
J.
, and
Rüde
,
U.
, “
Direct simulation of liquid–gas–solid flow with a free surface lattice Boltzmann method
,”
Int. J. Comput. Fluid Dyn.
31
,
463
475
(
2017
).
6.
Brady
,
M. R.
,
Telionis
,
D. P.
,
Vlachos
,
P. P.
, and
Yoon
,
R.-H.
, “
Evaluation of multiphase flotation models in grid turbulence via particle image velocimetry
,”
Int. J. Miner. Process.
80
,
133
143
(
2006
).
7.
Clare
,
B. W.
and
Kepert
,
D. L.
, “
The optimal packing of circles on a sphere
,”
J. Math. Chem.
6
,
325
349
(
1991
).
8.
Darabi
,
H.
,
Koleini
,
S. M. J.
,
Soltani
,
F.
,
Abdollahy
,
M.
, and
Ghadir
,
M.
, “
Investigation of cell geometry effect on the turbulence characteristics and flotation performance using particle image velocimetry technique
,”
Powder Technol.
376
,
458
467
(
2020
).
9.
Dinariev
,
O. Y.
and
Evseev
,
N. V.
, “
Modelling of flotation processes by density functional hydrodynamics
,”
Miner. Eng.
125
,
239
251
(
2018
).
10.
Ding
,
S.
,
Yu
,
K.
,
He
,
Q.
,
Yin
,
Q.
,
Feng
,
X.
,
Yong
,
Y.
,
Yang
,
C.
,
Cao
,
Y.
,
Gui
,
X.
, and
Xing
,
Y.
, “
Bubble-particle detachment in flotation: A comparative study of the tangential and vertical direction
,”
Powder Technol.
426
,
118655
(
2023
).
11.
Dobby
,
G.
and
Finch
,
J.
, “
Particle size dependence in flotation derived from a fundamental model of the capture process
,”
Int. J. Miner. Process.
21
,
241
260
(
1987
).
12.
Duan
,
J.
,
Fornasiero
,
D.
, and
Ralston
,
J.
, “
Calculation of the flotation rate constant of chalcopyrite particles in an ore
,”
Int. J. Miner. Process.
72
,
227
237
(
2003
).
13.
Evans
,
G.
,
Doroodchi
,
E.
,
Lane
,
G.
,
Koh
,
P.
, and
Schwarz
,
M.
, “
Mixing and gas dispersion in mineral flotation cells
,”
Int. J. Miner. Process.
86
,
1350
1362
(
2008
).
14.
Falgout
,
R. D.
and
Yang
,
U. M.
, “
hypre: A library of high performance preconditioners
,” in
Proceedings of the International Conference on Computational Science-Part III
(ICCS'02) (
Springer-Verlag
,
Berlin, Heidelberg
,
2002
), pp.
632
641
.
15.
Farrokhpay
,
S.
,
Filippov
,
L.
, and
Fornasiero
,
D.
, “
Flotation of fine particles: A review
,”
Miner. Process. Extr. Metall. Rev.
42
,
473
483
(
2021
).
16.
Fayed
,
H. E.
and
Ragab
,
S. A.
, “
Direct numerical simulation of particles-bubbles collisions kernel in homogeneous isotropic turbulence
,”
J. Comput. Multiphase Flows
5
,
167
188
(
2013
).
17.
Feng
,
D.
and
Aldrich
,
C.
, “
Effect of particle size on flotation performance of complex sulphide ores
,”
Miner. Eng.
12
,
721
731
(
1999
).
18.
Fu
,
Y.
,
Yang
,
B.
,
Ma
,
Y.
,
Sun
,
Q.
,
Yao
,
J.
,
Fu
,
W.
, and
Yin
,
W.
, “
Effect of particle size on magnesite flotation based on kinetic studies and machine learning simulation
,”
Powder Technol.
376
,
486
495
(
2020
).
19.
Fuerstenau
,
M. C.
and
Han
,
K. N.
,
Principles of Mineral Processing
(
SME
,
2003
).
20.
Fuerstenau
,
M. C.
,
Jameson
,
G.
, and
Yoon
,
R.-H.
,
Froth Flotation: A Century of Innovation
(
SME
,
2007
).
21.
Fujita
,
M.
,
Koike
,
O.
, and
Yamaguchi
,
Y.
, “
Computation of capillary interactions among many particles at free surface
,”
Appl. Phys. Express
6
,
036501
(
2013
).
22.
Fujita
,
M.
,
Koike
,
O.
, and
Yamaguchi
,
Y.
, “
Direct simulation of drying colloidal suspension on substrate using immersed free surface model
,”
J. Comput. Phys.
281
,
421
448
(
2015
).
23.
Fullana
,
T.
,
Kulkarni
,
Y.
,
Fricke
,
M.
,
Popinet
,
S.
,
Afkhami
,
S.
,
Bothe
,
D.
, and
Zaleski
,
S.
, “
A consistent treatment of dynamic contact angles in the sharp-interface framework with the generalized Navier boundary condition
,” arXiv:2411.10762,
2024
.
24.
Gao
,
Y.
,
Evans
,
G. M.
,
Wanless
,
E. J.
, and
Moreno-Atanasio
,
R.
, “
DEM simulation of single bubble flotation: Implications for the hydrophobic force in particle-bubble interactions
,”
Adv. Powder Technol.
25
,
1177
1184
(
2014
).
25.
Gharai
,
M.
and
Venugopal
,
R.
, “
Modeling of flotation process: An overview of different approaches
,”
Miner. Process. Extr. Metall. Rev.
37
,
120
133
(
2016
).
26.
Huang
,
Z.
,
Legendre
,
D.
, and
Guiraud
,
P.
, “
A new experimental method for determining particle capture efficiency in flotation
,”
Chem. Eng. Sci.
66
,
982
997
(
2011
).
27.
Karimi
,
M.
,
Akdogan
,
G.
, and
Bradshaw
,
S.
, “
A CFD-kinetic model for the flotation rate constant, Part II: Model validation
,”
Miner. Eng.
69
,
205
213
(
2014
).
28.
King
,
R.
,
Modeling and Simulation of Mineral Processing Systems
(
Butterworth-Heinemann
,
2001
).
29.
Koh
,
P.
and
Schwarz
,
M.
, “
Modelling attachment rates of multi-sized bubbles with particles in a flotation cell
,”
Miner. Eng.
21
,
989
993
(
2008
).
30.
Koh
,
P.
,
Manickam
,
M.
, and
Schwarz
,
M.
, “
CFD simulation of bubble-particle collisions in mineral flotation cells
,”
Miner. Eng.
13
(
14
),
1455
1463
(
2000
).
31.
Kostoglou
,
M.
,
Karapantsios
,
T. D.
, and
Matis
,
K. A.
, “
CFD model for the design of large scale flotation tanks for water and wastewater treatment
,”
Ind. Eng. Chem. Res.
46
,
6590
6599
(
2007
).
32.
Kruszelnicki
,
M.
,
Polowczyk
,
I.
, and
Kowalczuk
,
P. B.
, “
Insight into the influence of surface wettability on flotation properties of solid particles – Critical contact angle in flotation
,”
Powder Technol.
431
,
119056
(
2024
).
33.
Lee
,
C.-H.
,
Erickson
,
L.
, and
Glasgow
,
L.
, “
Bubble breakup and coalescence in turbulent gas-liquid dispersions
,”
Chem. Eng. Commun.
59
,
65
84
(
1987
).
34.
Liu
,
Q.
and
Luo
,
Z.-H.
, “
CFD-VOF-DPM simulations of bubble rising and coalescence in low hold-up particle-liquid suspension systems
,”
Powder Technol.
339
,
459
469
(
2018
).
35.
Liu
,
T.
and
Schwarz
,
M.
, “
CFD-based modelling of bubble-particle collision efficiency with mobile bubble surface in a turbulent environment
,”
Int. J. Miner. Process.
90
,
45
55
(
2009a
).
36.
Liu
,
T.
and
Schwarz
,
M.
, “
CFD-based multiscale modelling of bubble-particle collision efficiency in a turbulent flotation cell
,”
Chem. Eng. Sci.
64
,
5287
5301
(
2009b
).
37.
Liu
,
W.
,
Lu
,
J.
, and
Tryggvason
,
G.
, “
Numerical studies of bubbles in swirling channel flows
,”
J. Fluids Eng.
145
,
041401
(
2023
).
38.
Lu
,
J.
and
Tryggvason
,
G.
, “
Multifluid flows in a vertical channel undergoing topology changes: Effect of void fraction
,”
Phys. Rev. Fluids
4
,
084301
(
2019
).
39.
Lu
,
J.
,
Xu
,
X.
,
Zhong
,
S.
,
Ni
,
R.
, and
Tryggvason
,
G.
, “
The dynamics of suspensions of prolate spheroidal particles—Effects of volume fraction
,”
Int. J. Multiphase Flow
165
,
104469
(
2023
).
40.
Mao
,
L.
and
Yoon
,
R.-H.
, “
Predicting flotation rates using a rate equation derived from first principles
,”
Int. J. Miner. Process.
51
,
171
181
(
1997
).
41.
Maxwell
,
R.
,
Ata
,
S.
,
Wanless
,
E.
, and
Moreno-Atanasio
,
R.
, “
Computer simulations of particle-bubble interactions and particle sliding using Discrete Element Method
,”
J. Colloid Interface Sci.
381
,
1
10
(
2012
).
42.
Neethling
,
S.
and
Cillier
,
J.
, “
Grade-recovery curves: A new approach for analysis of and predicting from plant data
,”
Miner. Eng.
36–38
,
105
110
(
2012
).
43.
Ngo-Cong
,
D.
,
Nguyen
,
A. V.
, and
Tran-Cong
,
T.
, “
Isotropic turbulence surpasses gravity in affecting bubble-particle collision interaction in flotation
,”
Miner. Eng.
122
,
165
175
(
2018
).
44.
Nguyen
,
A. V.
,
An-Vo
,
D.-A.
,
Tran-Cong
,
T.
, and
Evans
,
G. M.
, “
A review of stochastic description of the turbulence effect on bubble-particle interactions in flotation
,”
Int. J. Miner. Process.
156
,
75
86
(
2016
).
45.
Persechini
,
M.
,
Jota
,
F.
, and
Peres
,
A.
, “
Dynamic model of a flotation column
,”
Miner. Eng.
13
,
1465
1481
(
2000
).
46.
Peskin
,
C. S.
, “
Numerical analysis of blood flow in the heart
,”
J. Comput. Phys.
25
,
220
(
1977
).
47.
Popli
,
K.
,
Sekhavat
,
M.
,
Afacan
,
A.
,
Dubljevic
,
S.
,
Liu
,
Q.
, and
Prasad
,
V.
, “
Dynamic modeling and real-time monitoring of froth flotation
,”
Minerals
5
,
570
591
(
2015
).
48.
Qian
,
T.
,
Wang
,
X.
, and
Sheng
,
P.
, “
Molecular scale contact line hydrodynamics of immiscible flows
,”
Phys. Rev. E
68
,
016306
(
2003
).
49.
Qin
,
Z.
and
Suckale
,
J.
, “
Direct numerical simulations of gas-solid-liquid interactions in dilute fluids
,”
Int. J. Multiphase Flow
96
,
34
47
(
2017
).
50.
Sasic
,
S.
,
Sibaki
,
E. K.
, and
Ström
,
H.
, “
Direct numerical simulation of a hydrodynamic interaction between settling particles and rising microbubbles
,”
Eur. J. Mech. B. Fluids
43
,
65
75
(
2014
).
51.
Schuhmann
,
R.
, “
Flotation kinetics. I. Methods for steady-state study of flotation problems
,”
J. Phys. Chem.
46
,
891
902
(
1942
).
52.
Shang
,
X.
,
Luo
,
Z.
,
Gatapova
,
E.
,
Kabov
,
O.
, and
Bai
,
B.
, “
GNBC-based front-tracking method for the three-dimensional simulation of droplet motion on a solid surface
,”
Comput. Fluids
172
,
181
195
(
2018
).
53.
Shang
,
X.
,
Luo
,
Z.
, and
Bai
,
B.
, “
Numerical simulation of dynamic behavior of compound droplets on solid surface in shear flow by front-tracing method
,”
Chem. Eng. Sci.
193
,
325
335
(
2019
).
54.
Shin
,
S.
,
Chergui
,
J.
, and
Juric
,
D.
, “
Direct simulation of multiphase flows with modeling of dynamic interface contact angle
,”
Theor. Comput. Fluid Dyn.
32
,
655
687
(
2018
).
55.
Tryggvason
,
G.
,
Scardovelli
,
R.
, and
Zaleski
,
S.
,
Direct Numerical Simulations of Gas-Liquid Multiphase Flows
(
Cambridge University Press
,
2011
).
56.
Uhlmann
,
M.
, “
An immersed boundary method with direct forcing for the simulation of particulate flows
,”
J. Comput. Phys.
209
,
448
476
(
2005
).
57.
Unverdi
,
S. O.
and
Tryggvason
,
G.
, “
A front-tracking method for viscous, incompressible, multi-fluid flows
,”
J. Comput. Phys.
100
,
25
37
(
1992
).
58.
van Sint Annaland
,
M.
,
Deen
,
N.
, and
Kuipers
,
J.
, “
Numerical simulation of gas–liquid–solid flows using a combined front tracking and discrete particle method
,”
Chem. Eng. Sci.
60
,
6188
6198
(
2005
).
59.
Verrelli
,
D. I.
,
Koh
,
P. T.
, and
Nguyen
,
A. V.
, “
Particle-bubble interaction and attachment in flotation
,”
Chem. Eng. Sci.
66
,
5910
5921
(
2011
).
60.
Wang
,
G.
,
Ge
,
L.
,
Mitra
,
S.
,
Evans
,
G. M.
,
Joshi
,
J.
, and
Chen
,
S.
, “
A review of CFD modelling studies on the flotation process
,”
Miner. Eng.
127
,
153
177
(
2018
).
61.
Wang
,
P.
,
Cilliers
,
J. J.
,
Neethling
,
S. J.
, and
Brito-Parada
,
P. R.
, “
The behavior of rising bubbles covered by particles
,”
Chem. Eng. J.
365
,
111
120
(
2019
).
62.
Washino
,
K.
,
Chan
,
E. L.
,
Tsujimoto
,
T.
,
Tsuji
,
T.
, and
Tanaka
,
T.
, “
Development of resolved CFD-DEM coupling model for three-phase flows with non-spherical particles
,”
Chem. Eng. Sci.
267
,
118335
(
2023
).
63.
Williams
,
M.
and
Meloy
,
T.
, “
Dynamic model of flotation cell banks—circuit analysis
,”
Int. J. Miner. Process.
10
,
141
160
(
1983
).
64.
Xia
,
H.
,
Zhang
,
Z.
,
Liu
,
J.
,
Ao
,
X.
,
Lin
,
S.
, and
Yang
,
Y.
, “
Modeling and numerical study of particle-bubble-liquid flows using a front-tracking and discrete-element method
,”
Appl. Math. Modell.
114
,
525
543
(
2023
).
65.
Xing
,
Y.
,
Gui
,
X.
,
Pan
,
L.
,
Pinchasik
,
B.-E.
,
Cao
,
Y.
,
Liu
,
J.
,
Kappl
,
M.
, and
Butt
,
H.-J.
, “
Recent experimental advances for understanding bubble-particle attachment in flotation
,”
Adv. Colloid Interface Sci.
246
,
105
132
(
2017
).
66.
Yabe
,
T.
,
Xiao
,
F.
, and
Utsumi
,
T.
, “
The constrained interpolation profile (CIP) method for multi-phase analysis
,”
J. Comput. Phys.
169
,
556
593
(
2001
).
67.
Yalcin
,
E.
and
Kelebek
,
S.
, “
Flotation kinetics of a pyritic gold ore
,”
Int. J. Miner. Process.
98
(
1
),
48
54
(
2011
).
68.
Yamamoto
,
Y.
,
Ito
,
T.
,
Wakimoto
,
T.
, and
Katoh
,
K.
, “
Numerical simulations of spontaneous capillary rises with very low capillary numbers using a front-tracking method combined with generalized Navier boundary condition
,”
Int. J. Multiphase Flow
51
,
22
32
(
2013
).
69.
Yamamoto
,
Y.
,
Tokieda
,
K.
,
Wakimoto
,
T.
,
Ito
,
T.
, and
Katoh
,
K.
, “
Modeling of the dynamic wetting behavior in a capillary tube considering the macroscopic-microscopic contact angle relation and generalized Navier boundary condition
,”
Int. J. Multiphase Flow
59
,
106
112
(
2014
).
70.
Yamamoto
,
Y.
,
Higashida
,
S.
,
Tanaka
,
H.
,
Wakimoto
,
T.
,
Ito
,
T.
, and
Katoh
,
K.
, “
Numerical analysis of contact line dynamics passing over a single wettable defect on a wall
,”
Phys. Fluids
28
,
082109
(
2016
).
71.
Yan
,
X.
,
Zheng
,
K.
,
Su
,
W.
,
Wang
,
L.
,
Zhang
,
H.
,
Cao
,
Y.
, and
Guo
,
C.
, “
Predictions of terminal rising velocity, shape and drag coefficient for particle-laden bubbles
,”
Miner. Eng.
173
,
107188
(
2021
).
72.
Yoon
,
R.-H.
and
Mao
,
L.
, “
Application of extended DLVO theory, IV: Derivation of flotation rate equation from first principles
,”
J. Colloid Interface Sci.
181
,
613
626
(
1996
).
73.
Zeng
,
L.
,
Rouhanitazangi
,
H.
,
Chen
,
X.
,
Lu
,
J.
, and
Tryggvason
,
G.
, “
Simulating moving contact lines in three-phase suspensions using a front tracking method
,” arXiv:2412.06991 (
2024
).
You do not currently have access to this content.