In order to understand the dynamic characteristics of raindrops hitting the protective surface of the roof camera during normal vehicle operation, the realizable K-Epsilon turbulence model, volume of fluid method, and liquid film model are employed to simulate the surrounding flow field, self-shape, and dynamic characteristics of the fluid film before and after raindrop impact. Under uniform inflow conditions, the simulation results of the pressure on the isolated camera protection surface, the motion trajectory before collision, and the spreading diameter after collision are verified by wind tunnel tests. A multiphase flow subdomain model of the roof camera protection surface is established to investigate the effects of various single raindrop diameters and distances from the impact surface, as well as the effects of double raindrop arrangements, under the actual incoming flow. As for the single raindrop, reducing the initial raindrop height increases the spreading area and decreases both global and local liquid film thickness. Furthermore, when the initial raindrop diameter is increased by 10%, there is an observed increase in both spread area and liquid film thickness compared to the baseline. As for the double raindrops, the spreading area in the juxtaposition condition is generally larger than that of the seriation condition, with the exception to a slight increase is observed toward the end. Upon the two raindrops fuse completely, the maximum liquid film thickness and the region with large liquid film thickness at the midline are larger in comparison with those in juxtaposition condition.

1.
T.
Brophy
,
D.
Mullins
,
A.
Parsi
,
J.
Horgan
,
E.
Ward
,
P.
Denny
,
C.
Eising
,
B.
Deegan
,
M.
Glavin
, and
E.
Jones
, “
A review of the impact of rain on camera-based perception in automated driving systems
,”
IEEE Access
11
,
67040
(
2023
).
2.
M.
Dianat
,
M.
Skarysz
, and
A.
Garmory
, “
A coupled level set and volume of fluid method for automotive exterior water management applications
,”
Int. J. Multiphase Flow
91
,
19
(
2017
).
3.
A. P.
Gaylard
,
A.
Kabanovs
,
J.
Jilesen
,
K.
Kirwan
, and
D. A.
Lockerby
, “
Simulation of rear surface contamination for a simple bluff body
,”
J. Wind Eng. Ind. Aerodyn.
165
,
13
(
2017
).
4.
A.
Kabanovs
,
A.
Garmory
,
M.
Passmore
, and
A.
Gaylard
, “
Computational simulations of unsteady flow field and spray impingement on a simplified automotive geometry
,”
J. Wind Eng. Ind. Aerodyn.
171
,
178
(
2017
).
5.
N.
Nikolopoulos
,
A.
Theodorakakos
, and
G.
Bergeles
, “
Normal impingement of a droplet onto a wall film: A numerical investigation
,”
Int. J. Heat Fluid Flow
26
,
119
(
2005
).
6.
H.
Shetabivsh
,
F.
Ommi
, and
G.
Heidarinejad
, “
Numerical analysis of droplet impact onto liquid film
,”
Phys. Fluids
26
,
012102
(
2014
).
7.
H.-Y.
Kim
and
J.-H.
Chun
, “
The recoiling of liquid droplets upon collision with solid surfaces
,”
Phys. Fluids
13
,
643
659
(
2001
).
8.
D.
Li
and
X.
Duan
, “
Numerical analysis of droplet impact and heat transfer on an inclined wet surface
,”
Int. J. Heat Mass Transfer
128
,
459
468
(
2019
).
9.
D. G. K.
Aboud
and
A. M.
Kietzig
, “
Splashing threshold of oblique droplet impacts on surfaces of various wettability
,”
Langmuir
31
,
10100
(
2015
).
10.
W.
Chen
,
Y.
Guo
,
J.
Chi
, and
S.
Shen
, “
Crown morphology of oblique drop impact on a curved liquid film
,”
Phys. Fluids
35
,
123309
(
2023
).
11.
T.
Srivastava
,
S. K.
Jena
, and
S.
Kondaraju
, “
Droplet impact and spreading on inclined surfaces
,”
Langmuir
37
,
13737
(
2021
).
12.
Y. H.
Yeong
,
J.
Burton
,
E.
Loth
, and
I. S.
Bayer
, “
Drop impact and rebound dynamics on an inclined superhydrophobic surface
,”
Langmuir
30
,
12027
(
2014
).
13.
G. E.
Cossali
,
M.
Marengo
, and
M.
Santini
, “
Impact of single and multiple drop array on a liquid film
,” in
Proceeding of the 19th ILASS-Europe
, Nottingham, UK (
2004
).
14.
K. V.
Beard
and
C.
Chuang
, “
A new model for the equilibrium shape of raindrops
,”
J. Atmos. Sci.
44
,
1509
1524
(
1987
).
15.
A. B.
Kostinski
and
R. A.
Shaw
, “
Raindrops large and small
,”
Nat. Phys.
5
,
624
625
(
2009
).
16.
Q.
Liu
,
J. H. Y.
Lo
,
Y.
Li
,
Y.
Liu
,
J.
Zhao
, and
L.
Xu
, “
The role of drop shape in impact and splash
,”
Nat. Commun.
12
,
3068
(
2021
).
17.
S.
Yun
and
G.
Lim
, “
Ellipsoidal drop impact on a solid surface for rebound suppression
,”
J. Fluid Mech.
752
,
266
281
(
2014
).
18.
B.
Dorschner
,
L.
Biasiori-Poulanges
,
K.
Schmidmayer
,
H.
El-Rabii
, and
T.
Colonius
, “
On the formation and recurrent shedding of ligaments in droplet aerobreakup
,”
J. Fluid Mech.
904
,
A20
(
2020
).
19.
A. J. B.
Milne
and
A.
Amirfazli
, “
Drop shedding by shear flow for hydrophilic to superhydrophobic surfaces
,”
Langmuir
25
,
14155
14164
(
2009
).
20.
M.
Agrawal
,
A. R.
Premlata
,
M. K.
Tripathi
,
B.
Karri
, and
K. C.
Sahu
, “
Nonspherical liquid droplet falling in air
,”
Phys. Rev. E
95
,
033111
(
2017
).
21.
F.
Yu
,
J.
Yang
,
R.
Tao
,
Y.
Tan
,
J.
Wang
,
D.
Wang
,
L.
Chen
,
Z.
Wang
, and
X.
Deng
, “
Aerodynamic super-repellent surfaces
,”
Research
6
,
0111
(
2023
).
22.
R.
Ayala
,
E. S.
Kim
, and
E. J.
Chae
, “
Aerodynamic characteristics of water droplets on superhydrophobic surfaces
,”
Phys. Fluids
36
,
025148
(
2024
).
23.
G.
Wickern
and
B.
Schwartekopp
, “
Correction of nozzle gradient effects in open jet wind tunnels
,”
SAE Technical Paper
No.
2004-01-0669
(
2004
).
24.
X.
Hao
,
Z.
Yang
, and
Q.
Li
, “
Study on flow field and aerodynamic noise of electric vehicle rearview mirror
,”
Proc. Inst. Mech. Eng. Part D
236
,
724
(
2022
).
25.
S. P.
Potham
,
L.
Zhao
, and
S.-Y.
Lee
, “
Numerical study on evaporation of spherical droplets impinging on the wall using Volume of Fluid (VOF) Model
,” SAE Technical Paper No. 2017-01-0852 (
2017
).
26.
J. S.
Marshall
and
W. M. K.
Palmer
, “
The distribution of raindrops with size
,”
J. Meteorol.
5
,
165
(
1948
).
27.
A. H.
Markowitz
, “
Raindrop size distribution expressions
,”
J. Appl. Meteorol.
15
,
1029
(
1976
).
28.
A. C.
Best
, “
Empirical formulae for the terminal velocity of water drops falling through the atmosphere
,”
Q. J. R. Meteorol. Soc.
76
,
302
(
1950
).
You do not currently have access to this content.