As a zero-carbon fuel with superior properties, ammonia has attracted much attention from the combustion industry in recent years. In ammonia combustion for gas turbines (GTs), direct combustion of liquid ammonia (LNH3) is considered a way to increase power, simplify the system, and reduce energy consumption. However, due to the low boiling point and high vaporization latent heat of ammonia, LNH3 is prone to flash boiling under GT conditions, leading to significant changes in its spray characteristics. The current understanding of such a special spray is still insufficient. In this paper, particle droplet image analysis, Mie scattering, and thermocouple temperature measurement were conducted for continuous flash LNH3 spray in normal pressure. Furthermore, large eddy simulation was carried out. The quantitative characterization and detailed study of its spray morphology, parameter distribution, mass transfer, and heat transfer process were investigated. Combining this with the evaporation process, the formation reason for its spray morphology was explained, and suggestions for optimizing the combustion organization of the flash boiling spray were given. The results show that the spray angle θ decreases rapidly from 86° to about 10°, the spray SMD is 16  μm and the diameter spatial distribution is uniform. The spray temperature is 238.1 K at the nozzle exit, which is lower than the boiling point (239.8 K), and subsequently drops to approximately 209 K downstream the spray. The bubble behavior inside the nozzle and the gas diffusion in the near field of spray led to the expansion of near-field spray, and further changed the nozzle characteristics. The spray can be divided into three regions: Spray-core-region, Spray-main-region, and Spray-edge. The extremely high concentration of gaseous ammonia in Spray-core-region significantly deteriorates evaporation. The difference of droplet velocity and evaporation ability between Spray-main-region and Spray-edge leads to the formation of “willow leaf” shaped spray.

1.
A. M.
Elbaz
,
S.
Wang
,
T. F.
Guiberti
, and
W. L.
Roberts
, “
Review on the recent advances on ammonia combustion from the fundamentals to the applications
,”
Fuel Commun.
10
,
100053
(
2022
).
2.
A.
Valera-Medina
,
H.
Xiao
,
M.
Owen-Jones
,
W. I.
David
, and
P.
Bowen
, “
Ammonia for power
,”
Prog. Energy Combust. Sci.
69
,
63
102
(
2018
).
3.
H.
Kobayashi
,
A.
Hayakawa
,
K. K. A.
Somarathne
, and
E. C.
Okafor
, “
Science and technology of ammonia combustion
,”
Proc. Combust. Inst.
37
,
109
133
(
2019
).
4.
M.
Zhang
,
X.
Wei
,
Z.
An
,
E. C.
Okafor
,
T. F.
Guiberti
,
J.
Wang
, and
Z.
Huang
, “
Flame stabilization and emission characteristics of ammonia combustion in lab-scale gas turbine combustors: Recent progress and prospects
,”
Prog. Energy Combust. Sci.
106
,
101193
(
2025
).
5.
M.
Zhang
,
Z.
An
,
L.
Wang
,
X.
Wei
,
B.
Jianayihan
,
J.
Wang
,
Z.
Huang
, and
H.
Tan
, “
The regulation effect of methane and hydrogen on the emission characteristics of ammonia/air combustion in a model combustor
,”
Int. J. Hydrogen Energy
46
,
21013
21025
(
2021
).
6.
Z.
An
,
M.
Zhang
,
W.
Zhang
,
R.
Mao
,
X.
Wei
,
J.
Wang
,
Z.
Huang
, and
H.
Tan
, “
Emission prediction and analysis on CH4/NH3/air swirl flames with LES-FGM method
,”
Fuel
304
,
121370
(
2021
).
7.
X.
Wei
,
M.
Zhang
,
Z.
An
,
J.
Wang
,
Z.
Huang
, and
H.
Tan
, “
Large eddy simulation on flame topologies and the blow-off characteristics of ammonia/air flame in a model gas turbine combustor
,”
Fuel
298
,
120846
(
2021
).
8.
M.
Zhang
,
X.
Wei
,
J.
Wang
,
Z.
Huang
, and
H.
Tan
, “
The blow-off and transient characteristics of co-firing ammonia/methane fuels in a swirl combustor
,”
Proc. Combust. Inst.
38
,
5181
5190
(
2021
).
9.
E. C.
Okafor
,
K. K. A.
Somarathne
,
A.
Hayakawa
,
T.
Kudo
,
O.
Kurata
,
N.
Iki
, and
H.
Kobayashi
, “
Towards the development of an efficient low-NOx ammonia combustor for a micro gas turbine
,”
Proc. Combust. Inst.
37
,
4597
4606
(
2019
).
10.
E. C.
Okafor
,
H.
Yamashita
,
A.
Hayakawa
,
K. K. A.
Somarathne
,
T.
Kudo
,
T.
Tsujimura
,
M.
Uchida
,
S.
Ito
, and
H.
Kobayashi
, “
Flame stability and emissions characteristics of liquid ammonia spray co-fired with methane in a single stage swirl combustor
,”
Fuel
287
,
119433
(
2021
).
11.
X.
Li
,
S.
Wang
,
S.
Yang
,
S.
Qiu
,
Z.
Sun
,
D. L.
Hung
, and
M.
Xu
, “
A review on the recent advances of flash boiling atomization and combustion applications
,”
Prog. Energy Combust. Sci.
100
,
101119
(
2024
).
12.
S.
Yang
,
X.
Li
,
D. L.
Hung
, and
M.
Xu
, “
Characteristics and correlation of nozzle internal flow and jet breakup under flash boiling conditions
,”
Int. J. Heat Mass Transfer
127
,
959
969
(
2018
).
13.
S.
Yang
,
Q.
Zhai
,
X.
Li
,
D. L.
Hung
, and
M.
Xu
, “
Flash boiling fuel initial disturbance in a transparent step-hole nozzle and its effect on external flows
,”
Fuel
274
,
117768
(
2020
).
14.
W.
Zeng
,
M.
Xu
,
G.
Zhang
,
Y.
Zhang
, and
D. J.
Cleary
, “
Atomization and vaporization for flash-boiling multi-hole sprays with alcohol fuels
,”
Fuel
95
,
287
297
(
2012
).
15.
X.
Zhu
,
X.
Pan
,
J.
Ma
,
Y.
Mei
,
H.
Tang
,
Y.
Zhu
,
L.
Liu
,
J.
Jiang
, and
T.
Chen
, “
Dynamic behaviors of in-tank subcooled liquid with depressurization-induced phase change and the impact on primary breakup of flashing jet
,”
Int. J. Therm. Sci.
186
,
108118
(
2023a
).
16.
R.
Pelé
,
C.
Mounaïm-Rousselle
,
P.
Bréquigny
,
C.
Hespel
, and
J.
Bellettre
, “
First study on ammonia spray characteristics with a current GDI engine injector
,”
Fuels
2
,
253
271
(
2021
).
17.
S.
Li
,
T.
Li
,
N.
Wang
,
X.
Zhou
,
R.
Chen
, and
P.
Yi
, “
An investigation on near-field and far-field characteristics of superheated ammonia spray
,”
Fuel
324
,
124683
(
2022
).
18.
X.
Liu
,
X.
Yao
,
Z.
Wang
, and
C.
Tang
, “
Single hole ammonia spray macroscopic and microscopic characteristics at flare and transition flash boiling regions
,”
Appl. Therm. Eng.
235
,
121443
(
2023
).
19.
Z.
An
,
J.
Xing
, and
R.
Kurose
, “
Numerical study on the phase change and spray characteristics of liquid ammonia flash spray
,”
Fuel
345
,
128229
(
2023
).
20.
Z.
An
,
J.
Xing
,
A. L.
Pillai
, and
R.
Kurose
, “
Numerical study on spherical flame propagation in dispersed liquid ammonia droplets
,”
Fuel
357
,
129660
(
2024
).
21.
R.
Wang
,
M.
Zhang
,
Z.
An
,
X.
Cai
,
J.
Liu
,
J.
Wang
, and
Z.
Huang
, “
Topology characteristics of liquid ammonia swirl spray flame
,”
Proc. Combust. Inst.
40
,
105740
(
2024
).
22.
J.
Shin
,
D.
Kim
,
J.
Seo
, and
S.
Park
, “
Effects of the physical properties of fuel on spray characteristics from a gas turbine nozzle
,”
Energy
205
,
118090
(
2020
).
23.
X.
Liu
,
R.
Xue
,
Y.
Ruan
,
L.
Chen
,
X.
Zhang
, and
Y.
Hou
, “
Flow characteristics of liquid nitrogen through solid-cone pressure swirl nozzles
,”
Appl. Therm. Eng.
110
,
290
297
(
2017
).
24.
S.
Privitera
,
G.
Manetto
,
S.
Pascuzzi
,
D.
Pessina
, and
E.
Cerruto
, “
Drop size measurement techniques for agricultural sprays: A state-of-the-art review
,”
Agronomy
13
,
678
(
2023
).
25.
L.
Qieni
,
H.
Kan
,
G.
Baozhen
, and
W.
Xiang
, “
High-accuracy simultaneous measurement of particle size and location using interferometric out-of-focus imaging
,”
Opt. Express
24
,
16530
16543
(
2016
).
26.
K.
Yao
and
J.
Shen
, “
Measurement of particle size and refractive index based on interferometric particle imaging
,”
Opt. Laser Technol.
141
,
107110
(
2021
).
27.
N.
Sharma
,
W. D.
Bachalo
, and
A. K.
Agarwal
, “
Spray droplet size distribution and droplet velocity measurements in a firing optical engine
,”
Phys. Fluids
32
,
023304
(
2020
).
28.
K. D. K. A.
Somarathne
,
H.
Yamashita
,
S.
Colson
,
K.
Oku
,
K.
Honda
,
E. C.
Okafor
,
A.
Hayakawa
,
T.
Kudo
, and
H.
Kobayashi
, “
Towards the development of liquid ammonia/air spray combustion in a gas turbine-like combustor at moderately high pressure
,”
Appl. Energy Combust. Sci.
16
,
100215
(
2023
).
29.
A.
Verdier
,
J. M.
Santiago
,
A.
Vandel
,
G.
Godard
,
G.
Cabot
, and
B.
Renou
, “
Local extinction mechanisms analysis of spray jet flame using high speed diagnostics
,”
Combust. Flame
193
,
440
452
(
2018
).
30.
Z.
Feng
,
C.
Tang
,
Y.
Yin
,
P.
Zhang
, and
Z.
Huang
, “
Time-resolved droplet size and velocity distributions in a dilute region of a high-pressure pulsed diesel spray
,”
Int. J. Heat Mass Transfer
133
,
745
755
(
2019
).
31.
J. T.
Kashdan
,
J. S.
Shrimpton
, and
A.
Whybrew
, “
A digital image analysis technique for quantitative characterisation of high-speed sprays
,”
Opt. Lasers Eng.
45
,
106
115
(
2007
).
32.
R.
Bilger
, “
A note on Favre averaging in variable density flows
,”
Combust. Sci. Technol.
11
,
215
217
(
1975
).
33.
A.
Scotti
,
C.
Meneveau
, and
D. K.
Lilly
, “
Generalized Smagorinsky model for anisotropic grids
,”
Phys. Fluids A
5
,
2306
2308
(
1993
).
34.
L.
Schiller
, “
A drag coefficient correlation
,”
Zeit. Ver. Deutsch. Ing.
77
,
318
320
(
1933
).
35.
R. B.
Bird
, “
Transport phenomena
,”
Appl. Mech. Rev.
55
,
R1
R4
(
2002
).
36.
Z.
An
,
J.
Xing
,
A. L.
Pillai
, and
R.
Kurose
, “
Extended flamelet-based models for liquid ammonia combustion and their evaluation in a temporally evolving mixing layer
,”
Fuel
371
,
131964
(
2024
).
37.
P.
Zhang
,
W.
Li
,
T.
Zhang
,
Y.
Yan
,
J.
Li
, and
H.
Tang
, “
Multiscale modeling of liquid jet breakup in crossflow using an Eulerian/Lagrangian approach
,”
Phys. Fluids
35
,
125146
(
2023
).
38.
W.
Ranz
, “
Evaporation from Drops-I and-II
,”
Chem. Eng. Prog.
48
,
141
146
(
1952
).
39.
R. S. B. J.
Miller
, “
Direct numerical simulation of a confined three-dimensional gas mixing layer with one evaporating hydrocarbon-droplet-laden stream
,”
J. Fluid Mech.
384
,
293
(
1999
).
40.
G.
Faeth
, “
Current status of droplet and liquid combustion
,” in
Energy and Combustion Science
, edited by
N.
Chigier
(
Pergamon
,
1979
), pp.
149
182
.
41.
Q.
Lv
,
Y.
Wu
,
X.
Wang
,
L.
Zeng
, and
X.
Wu
, “
Measurement of interacting ethanol droplets evaporation at moderately elevated temperature and pressure using phase rainbow refractometry
,”
Int. J. Heat Mass Transfer
196
,
123220
(
2022
).
42.
L.
Ma
and
D.
Roekaerts
, “
Modeling of spray jet flame under mild condition with non-adiabatic FGM and a new conditional droplet injection model
,”
Combust. Flame
165
,
402
423
(
2016
).
43.
Y.
Huang
,
S.
Huang
,
R.
Huang
, and
G.
Hong
, “
Spray and evaporation characteristics of ethanol and gasoline direct injection in non-evaporating, transition and flash-boiling conditions
,”
Energy Convers. Manage.
108
,
68
77
(
2016
).
44.
Y.-C.
Chen
,
S. H.
Stårner
, and
A. R.
Masri
, “
A detailed experimental investigation of well-defined, turbulent evaporating spray jets of acetone
,”
Int. J. Multiphase Flow
32
,
389
412
(
2006
).
45.
A. L.
Sánchez
,
J.
Urzay
, and
A.
Liñán
, “
The role of separation of scales in the description of spray combustion
,”
Proc. Combust. Inst.
35
,
1549
1577
(
2015
).
46.
Y.
Fang
,
X.
Ma
,
Y.
Zhang
,
Y.
Li
,
K.
Zhang
,
C.
Jiang
,
Z.
Wang
, and
S.
Shuai
, “
Experimental investigation of high-pressure liquid ammonia injection under non-flash boiling and flash boiling conditions
,”
Energies
16
,
2843
(
2023
).
47.
Q.
Cheng
,
K.
Ojanen
,
Y.
Diao
,
O.
Kaario
, and
M.
Larmi
, “
Dynamics of the ammonia spray using high-speed schlieren imaging
,”
SAE Int. J. Adv. Curr. Prac. Mobil.
4
,
1138
1153
(
2022
).
48.
X.-W.
Lin
,
D.-Q.
Zhu
,
Z.-F.
Zhou
,
S.-Q.
Xue
,
T.-F.
Liu
,
J.-F.
Wang
,
B.
Chen
, and
E.
Lichtfouse
, “
Categorization of iso-pentane flashing spray based on morphology, thermodynamical and mechanical effects
,”
Int. J. Multiph. Flow
170
,
104657
(
2024
).
49.
S.
Yoon
,
J.
Hewson
,
P.
DesJardin
,
D.
Glaze
,
A.
Black
, and
R.
Skaggs
, “
Numerical modeling and experimental measurements of a high speed solid-cone water spray for use in fire suppression applications
,”
Int. J. Multiph. Flow
30
,
1369
1388
(
2004
).
50.
M.
Li
,
H.
Yang
,
J.
Wang
,
G.
Li
, and
J.
Tang
, “
An experimental investigation of the impact of surface tension and viscosity on the atomization effect of a solid cone nozzle
,”
Appl. Sci.
13
,
4522
(
2023
).
51.
Q.
Chen
,
Q.
Zhong
,
M.
Qi
, and
X.
Wang
, “
Comparison of vortex identification criteria for planar velocity fields in wall turbulence
,”
Phys. Fluids
27
,
085101
(
2015
).
52.
W.
Zhang
,
J.
Wang
,
R.
Mao
,
W.
Lin
,
B.
Lin
,
Y.
Wu
,
M.
Zhang
, and
Z.
Huang
, “
Experimental study of compact swirl flames with lean premixed CH4/H2/air mixtures at stable and near blow-off conditions
,”
Exp. Therm. Fluid Sci.
122
,
110294
(
2021c
).
53.
C-y
Guo
,
Y-y
Wu
,
Y.
Han
,
M-l
Ji
,
Y-h
Wang
, and
Y-f
Kuai
, “
Numerical investigation of the influence of surface wettability on water entry of spheres
,”
Phys. Fluids
35
,
063325
(
2023
).
54.
F.
Lu
,
C.
Guo
,
S.
Zhang
,
B.
Chen
, and
X.
Xu
, “
Numerical investigation of the flow characteristics of supercritical carbon dioxide in a high-speed rotating annular gap
,”
Phys. Fluids
35
,
102010
(
2023
).
55.
X.
Zhu
,
X.
Pan
,
Y.
Mei
,
J.
Ma
,
H.
Tang
,
Y.
Zhu
,
L. X.
Liu
,
J.
Jiang
, and
T.
Chen
, “
Thermal nonequilibrium and mechanical forces induced breakup and droplet formation of superheated liquid jets under depressurized release
,”
Appl. Therm. Eng.
221
,
119826
(
2023
).
56.
A.
Guenther
,
A.
Braeuer
,
P.
Siegler
,
B.
Kninger
, and
K.-E.
Wirth
, “
Temperature characteristics in a flash atomization process
,”
At. Sprays
26
,
1337
(
2016
).
57.
R.
Miller
,
K.
Harstad
, and
J.
Bellan
, “
Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid flow simulations
,”
Int. J. Multiph. Flow
24
,
1025
1055
(
1998
).
You do not currently have access to this content.