Large amplitude oscillatory shear (LAOS) test has been used to elucidate the nonlinear viscoelastic behaviors of soft matter or complex fluids under large and rapid deformations encountered in production and application, especially for most polymeric materials. In this work, combined with recovery rheology, the physical visualization of the start and end yield stress values of yield stress fluids determined by the algebraic stress bifurcation (ASB) method is further interpreted in extenso. Facing the issue of unrecoverable deformations that may occur below the yield stress, the ASB method suggests the start and end yield stresses by considering the timescale, thereby linking the yield stress determination and nonlinear behavior analysis in LAOS. The unusual sharp corners in the Lissajous curves induced by the Kamani–Donley–Rogers (KDR) model are also revealed and treated by viscosity regularization. The correlation among the yield points determined by ASB and stress bifurcation, the responses of the KDR model, and corresponding results and insights by main LAOS analyses in representative cases are comprehensively discussed. This work contributes to a new understanding of stress bifurcation.

1.
P.
Wang
and
H.
Zhang
, “
New insights into tackling large amplitude oscillatory shear (LAOS): An analytic LAOS approach (aLAOS)
,” arXiv:2308.05340 (
2023
).
2.
P.
Wang
,
J.
Xu
, and
H.
Zhang
, “
Demonstration of a facile and efficient strategy for yield stress determination in large amplitude oscillatory shear: Algebraic stress bifurcation
,”
Phys. Fluids
35
,
123107
(
2023
).
3.
P.
Wang
,
Q.
Liao
,
H.
Ren
,
Z.
Zhou
,
Y.
Wang
,
A.
Ma
, and
H.
Zhang
, “
Dysphagia-oriented non-Newtonian flow analysis of mayonnaise on different timescales using large amplitude oscillatory shear (LAOS) models
,”
Food Hydrocolloids
161
,
110867
(
2025
).
4.
D.
Bonn
and
M. M.
Denn
, “
Yield stress fluids slowly yield to analysis
,”
Science
324
,
1401
1402
(
2009
).
5.
D.
Bonn
,
M. M.
Denn
,
L.
Berthier
,
T.
Divoux
, and
S.
Manneville
, “
Yield stress materials in soft condensed matter
,”
Rev. Mod. Phys.
89
,
035005
(
2017
).
6.
Y.
Wei
,
R.
Li
, and
H.
Zhang
, “
Measures of the yield stress fluids oriented for dysphagia management using steady-state shear, transient shear, and large-amplitude oscillatory shear (LAOS)
,”
Phys. Fluids
34
,
123107
(
2022
).
7.
K.
Hyun
,
M.
Wilhelm
,
C. O.
Klein
,
K. S.
Cho
,
J. G.
Nam
,
K. H.
Ahn
,
S. J.
Lee
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)
,”
Prog. Polym. Sci.
36
,
1697
1753
(
2011
).
8.
M.
Wilhelm
,
D.
Maring
, and
H. W.
Spiess
, “
Fourier-transform rheology
,”
Rheol. Acta
37
,
399
405
(
1998
).
9.
M.
Wilhelm
,
P.
Reinheimer
, and
M.
Ortseifer
, “
High sensitivity Fourier-transform rheology
,”
Rheol. Acta
38
,
349
356
(
1999
).
10.
M.
Wilhelm
, “
Fourier-transform rheology
,”
Macromol. Mater. Eng.
287
,
83
105
(
2002
).
11.
K. S.
Cho
,
K.
Hyun
,
K. H.
Ahn
, and
S. J.
Lee
, “
A geometrical interpretation of large amplitude oscillatory shear response
,”
J. Rheol.
49
,
747
758
(
2005
).
12.
W.
Yu
,
P.
Wang
, and
C.
Zhou
, “
General stress decomposition in nonlinear oscillatory shear flow
,”
J. Rheol.
53
,
215
238
(
2009
).
13.
W.
Yu
,
Y.
Du
, and
C.
Zhou
, “
A geometric average interpretation on the nonlinear oscillatory shear
,”
J. Rheol.
57
,
1147
1175
(
2013
).
14.
C. O.
Klein
,
H. W.
Spiess
,
A.
Calin
,
C.
Balan
, and
M.
Wilhelm
, “
Separation of the nonlinear oscillatory response into a superposition of linear, strain hardening, strain softening, and wall slip response
,”
Macromolecules
40
,
4250
4259
(
2007
).
15.
R. H.
Ewoldt
,
A. E.
Hosoi
, and
G. H.
McKinley
, “
An ontology for large amplitude oscillatory shear flow
,”
AIP Conf. Proc.
1027
,
1135
1137
(
2008
).
16.
R. H.
Ewoldt
,
A. E.
Hosoi
, and
G. H.
McKinley
, “
New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear
,”
J. Rheol.
52
,
1427
1458
(
2008
).
17.
S. N.
Ganeriwala
and
C. A.
Rotz
, “
Fourier transform mechanical analysis for determining the nonlinear viscoelastic properties of polymers
,”
Polym. Eng. Sci.
27
,
165
178
(
1987
).
18.
R. H.
Ewoldt
,
P.
Winter
,
J.
Maxey
, and
G. H.
McKinley
, “
Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials
,”
Rheol. Acta
49
,
191
212
(
2010
).
19.
K.
Yang
,
Z.
Liu
,
J.
Wang
, and
W.
Yu
, “
Stress bifurcation in large amplitude oscillatory shear of yield stress fluids
,”
J. Rheol.
62
,
89
106
(
2018
).
20.
S. A.
Rogers
,
B. M.
Erwin
,
D.
Vlassopoulos
, and
M.
Cloitre
, “
A sequence of physical processes determined and quantified in LAOS: Application to a yield stress fluid
,”
J. Rheol.
55
,
435
458
(
2011
).
21.
C.-W.
Lee
and
S. A.
Rogers
, “
A sequence of physical processes quantified in LAOS by continuous local measures
,”
Korea-Aust. Rheol. J.
29
,
269
279
(
2017
).
22.
S. A.
Rogers
, “
A sequence of physical processes determined and quantified in LAOS: An instantaneous local 2D/3D approach
,”
J. Rheol.
56
,
1129
1151
(
2012
).
23.
S. A.
Rogers
, “
In search of physical meaning: Defining transient parameters for nonlinear viscoelasticity
,”
Rheol. Acta
56
,
501
525
(
2017
).
24.
J.
Choi
,
F.
Nettesheim
, and
S. A.
Rogers
, “
The unification of disparate rheological measures in oscillatory shearing
,”
Phys. Fluids
31
,
073107
(
2019
).
25.
S. A.
Rogers
and
M. P.
Lettinga
, “
A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models
,”
J. Rheol.
56
,
1
25
(
2012
).
26.
J. C.-W.
Lee
,
K. M.
Weigandt
,
E. G.
Kelley
, and
S. A.
Rogers
, “
Structure-property relationships via recovery rheology in viscoelastic materials
,”
Phys. Rev. Lett.
122
,
248003
(
2019
).
27.
K. M.
Kamani
,
G. J.
Donley
,
R.
Rao
,
A. M.
Grillet
,
C.
Roberts
,
A.
Shetty
, and
S. A.
Rogers
, “
Understanding the transient large amplitude oscillatory shear behavior of yield stress fluids
,”
J. Rheol.
67
,
331
352
(
2023
).
28.
J. J.
Griebler
and
S. A.
Rogers
, “
The nonlinear rheology of complex yield stress foods
,”
Phys. Fluids
34
,
023107
(
2022
).
29.
P. K.
Singh
,
J. C.-W.
Lee
,
K. A.
Patankar
, and
S. A.
Rogers
, “
Revisiting the basis of transient rheological material functions: Insights from recoverable strain measurements
,”
J. Rheol.
65
,
129
144
(
2021
).
30.
J. C.-W.
Lee
,
Y.-T.
Hong
,
K. M.
Weigandt
,
E. G.
Kelley
,
H.
Kong
, and
S. A.
Rogers
, “
Strain shifts under stress-controlled oscillatory shearing in theoretical, experimental, and structural perspectives: Application to probing zero-shear viscosity
,”
J. Rheol.
63
,
863
881
(
2019
).
31.
K.
Weissenberg
, “
A continuum theory of rheological phenomena
,”
Nature
159
,
310
311
(
1947
).
32.
M.
Reiner
, “
Rheology
,” in
Elasticity and Plasticity/Elastizität Und Plastizität
, edited by
S.
Flügge
(
Springer
,
Berlin, Heidelberg
,
1958
), pp.
434
550
.
33.
G. J.
Donley
,
P. K.
Singh
,
A.
Shetty
, and
S. A.
Rogers
, “
Elucidating the G″ overshoot in soft materials with a yield transition via a time-resolved experimental strain decomposition
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
21945
21952
(
2020
).
34.
K.
Kamani
,
G. J.
Donley
, and
S. A.
Rogers
, “
Unification of the rheological physics of yield stress fluids
,”
Phys. Rev. Lett.
126
,
218002
(
2021
).
35.
D.
De Kee
, “
Yield stress measurement techniques: A review
,”
Phys. Fluids
33
,
111301
(
2021
).
36.
H.
Rahmani
,
H.
Kumar
,
J.
Greener
, and
S. M.
Taghavi
, “
Yield stress fluid flows in superhydrophobic channels: From creeping to inertial regime
,”
Phys. Fluids
35
,
083107
(
2023
).
37.
A.
Malkin
,
V.
Kulichikhin
, and
S.
Ilyin
, “
A modern look on yield stress fluids
,”
Rheol Acta
56
,
177
188
(
2017
).
38.
H. A.
Barnes
, “
The yield stress—a review or ‘παντα ρει’—everything flows?
J. Non-Newtonian Fluid Mech.
81
,
133
178
(
1999
).
39.
H. A.
Barnes
and
K.
Walters
, “
The yield stress myth?
Rheol. Acta
24
,
323
326
(
1985
).
40.
K. N.
Nordstrom
,
E.
Verneuil
,
P. E.
Arratia
,
A.
Basu
,
Z.
Zhang
,
A. G.
Yodh
,
J. P.
Gollub
, and
D. J.
Durian
, “
Microfluidic rheology of soft colloids above and below Jamming
,”
Phys. Rev. Lett.
105
,
175701
(
2010
).
41.
A.
Basu
,
Y.
Xu
,
T.
Still
,
P. E.
Arratia
,
Z.
Zhang
,
K. N.
Nordstrom
,
J. M.
Rieser
,
J. P.
Gollub
,
D. J.
Durian
, and
A. G.
Yodh
, “
Rheology of soft colloids across the onset of rigidity: Scaling behavior, thermal, and non-thermal responses
,”
Soft Matter
10
,
3027
3035
(
2014
).
42.
M. M.
Denn
and
D.
Bonn
, “
Issues in the flow of yield-stress liquids
,”
Rheol. Acta
50
,
307
315
(
2011
).
43.
Q. D.
Nguyen
and
D. V.
Boger
, “
Measuring the flow properties of yield stress fluids
,”
Annu. Rev. Fluid Mech.
24
,
47
88
(
1992
).
44.
H. A.
Barnes
and
Q. D.
Nguyen
, “
Rotating vane rheometry — A review
,”
J. Non-Newtonian Fluid Mech.
98
,
1
14
(
2001
).
45.
W.
Letwimolnun
,
B.
Vergnes
,
G.
Ausias
, and
P. J.
Carreau
, “
Stress overshoots of organoclay nanocomposites in transient shear flow
,”
J. Non-Newtonian Fluid Mech.
141
,
167
179
(
2007
).
46.
M.
Dinkgreve
,
M. M.
Denn
, and
D.
Bonn
, ““
Everything flows?”: Elastic effects on startup flows of yield-stress fluids
,”
Rheol. Acta
56
,
189
194
(
2017
).
47.
P.
Moller
,
A.
Fall
,
V.
Chikkadi
,
D.
Derks
, and
D.
Bonn
, “
An attempt to categorize yield stress fluid behaviour
,”
Philos. Trans. R. Soc. A
367
,
5139
5155
(
2009
).
48.
P.
Coussot
,
Q. D.
Nguyen
,
H. T.
Huynh
, and
D.
Bonn
, “
Avalanche behavior in yield stress fluids
,”
Phys. Rev. Lett.
88
,
175501
(
2002
).
49.
P.
Coussot
,
Q. D.
Nguyen
,
H. T.
Huynh
, and
D.
Bonn
, “
Viscosity bifurcation in thixotropic, yielding fluids
,”
J. Rheol.
46
,
573
589
(
2002
).
50.
I. D.
Evans
, “
Letter to the editor: On the nature of the yield stress
,”
J. Rheol.
36
,
1313
1318
(
1992
).
51.
M. C.
Yang
,
L. E.
Scriven
, and
C. W.
Macosko
, “
Some rheological measurements on magnetic iron oxide suspensions in silicone oil
,”
J. Rheol.
30
,
1015
1029
(
1986
).
52.
F.
Renou
,
J.
Stellbrink
, and
G.
Petekidis
, “
Yielding processes in a colloidal glass of soft star-like micelles under large amplitude oscillatory shear (LAOS)
,”
J. Rheol.
54
,
1219
1242
(
2010
).
53.
J. M.
Piau
, “
Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges: Meso- and macroscopic properties, constitutive equations and scaling laws
,”
J. Non-Newtonian Fluid Mech.
144
,
1
29
(
2007
).
54.
X.
Li
,
Y.
Fang
,
H.
Zhang
,
K.
Nishinari
,
S.
Al-Assaf
, and
G. O.
Phillips
, “
Rheological properties of gum arabic solution: From Newtonianism to thixotropy
,”
Food Hydrocolloid
25
,
293
298
(
2011
).
55.
T.
Gibaud
,
D.
Frelat
, and
S.
Manneville
, “
Heterogeneous yielding dynamics in a colloidal gel
,”
Soft Matter
6
,
3482
3488
(
2010
).
56.
B.
Ferdowsi
,
C. P.
Ortiz
, and
D. J.
Jerolmack
, “
Glassy dynamics of landscape evolution
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
4827
4832
(
2018
).
57.
S.
Karmakar
,
A.
Lemaître
,
E.
Lerner
, and
I.
Procaccia
, “
Predicting plastic flow events in athermal shear-strained amorphous solids
,”
Phys. Rev. Lett.
104
,
215502
(
2010
).
58.
J.
Lin
,
E.
Lerner
,
A.
Rosso
, and
M.
Wyart
, “
Scaling description of the yielding transition in soft amorphous solids at zero temperature
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
14382
14387
(
2014
).
59.
J. D.
Paulsen
,
N. C.
Keim
, and
S. R.
Nagel
, “
Multiple transient memories in experiments on sheared non-Brownian suspensions
,”
Phys. Rev. Lett.
113
,
068301
(
2014
).
60.
G.
Petekidis
,
A.
Moussaïd
, and
P. N.
Pusey
, “
Rearrangements in hard-sphere glasses under oscillatory shear strain
,”
Phys. Rev. E
66
,
051402
(
2002
).
61.
R.
Zondervan
,
T.
Xia
,
H.
van der Meer
,
C.
Storm
,
F.
Kulzer
,
W.
van Saarloos
, and
M.
Orrit
, “
Soft glassy rheology of supercooled molecular liquids
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
4993
4998
(
2008
).
62.
N. C.
Keim
and
P. E.
Arratia
, “
Mechanical and microscopic properties of the reversible plastic regime in a 2D jammed material
,”
Phys. Rev. Lett.
112
,
028302
(
2014
).
63.
C. W.
Macosko
,
Rheology: Principles, Measurements, and Applications
(
Wiley
,
1994
).
64.
J. J.
Griebler
,
G. J.
Donley
,
V.
Wisniewski
, and
S. A.
Rogers
, “
Strain shift measured from stress-controlled oscillatory shear: Evidence for a continuous yielding transition and new techniques to determine recovery rheology measures
,”
J. Rheol.
68
,
301
315
(
2024
).
65.
F.
Irgens
,
Rheology and Non-Newtonian Fluids
(
Springer
,
2014
), Vol.
190
.
66.
N.
Phan-Thien
and
N.
Mai-Duy
,
Understanding Viscoelasticity: An Introduction to Rheology
(
Springer
,
2013
).
67.
A.
Brown
,
G.
Burke
, and
B. J.
Meenan
, “
Modeling of shear stress experienced by endothelial cells cultured on microstructured polymer substrates in a parallel plate flow chamber
,”
Biotechnol. Bioeng.
108
,
1148
1158
(
2011
).
68.
G. J.
Donley
,
J. R.
de Bruyn
,
G. H.
McKinley
, and
S. A.
Rogers
, “
Time-resolved dynamics of the yielding transition in soft materials
,”
J. Non-Newtonian Fluid Mech.
264
,
117
134
(
2019
).
69.
J.
Xu
,
P.
Wang
,
Z.
Zhou
,
B.
Yuan
, and
H.
Zhang
, “
Nonlinear oscillatory rheology of aqueous suspensions of cellulose nanocrystals and nanofibrils
,”
J. Rheol.
68
,
491
508
(
2024
).
70.
S. A.
Rogers
and
D.
Vlassopoulos
, “
Frieze group analysis of asymmetric response to large-amplitude oscillatory shear
,”
J. Rheol.
54
,
859
880
(
2010
).
71.
C.
Carotenuto
,
M.
Grosso
, and
P. L.
Maffettone
, “
Fourier transform rheology of dilute immiscible polymer blends: A novel procedure to probe blend morphology
,”
Macromolecules
41
,
4492
4500
(
2008
).
72.
A. S.
Yoshimura
and
R. K.
Prud'homme
, “
Wall slip effects on dynamic oscillatory measurements
,”
J. Rheol.
32
,
575
584
(
1988
).
73.
K.
Atalık
and
R.
Keunings
, “
On the occurrence of even harmonics in the shear stress response of viscoelastic fluids in large amplitude oscillatory shear
,”
J. Non-Newtonian Fluid Mech.
122
,
107
116
(
2004
).
74.
L. M. C.
Sagis
,
M.
Ramaekers
, and
E.
van der Linden
, “
Constitutive equations for an elastic material with anisotropic rigid particles
,”
Phys. Rev. E
63
,
051504
(
2001
).
75.
H. G.
Sim
,
K. H.
Ahn
, and
S. J.
Lee
, “
Three-dimensional dynamics simulation of electrorheological fluids under large amplitude oscillatory shear flow
,”
J. Rheol.
47
,
879
895
(
2003
).
76.
M.
Armstrong
,
T.
Helton
,
G.
Donley
,
S.
Rogers
, and
J.
Horner
, “
A small-scale study of nonlinear blood rheology shows rapid transient transitions
,”
Rheol. Acta
59
,
687
705
(
2020
).
77.
I. A.
Frigaard
and
C.
Nouar
, “
On the usage of viscosity regularisation methods for visco-plastic fluid flow computation
,”
J. Non-Newtonian Fluid Mech.
127
,
1
26
(
2005
).
78.
M.
Allouche
,
I. A.
Frigaard
, and
G.
Sona
, “
Static wall layers in the displacement of two visco-plastic fluids in a plane channel
,”
J. Fluid Mech.
424
,
243
277
(
2000
).
79.
M.
Bercovier
and
M.
Engelman
, “
A finite-element method for incompressible non-Newtonian flows
,”
J. Comput. Phys.
36
,
313
326
(
1980
).
80.
T. C.
Papanastasiou
, “
Flows of materials with yield
,”
J. Rheol.
31
,
385
404
(
1987
).
81.
Y.
Wang
and
C.
Selomulya
, “
Food rheology applications of large amplitude oscillation shear (LAOS)
,”
Trends Food Sci. Technol.
127
,
221
244
(
2022
).
82.
C.
Saengow
and
A. J.
Giacomin
, “
Review of nonlinear oscillatory shear flow notations and presentations: Polymeric liquids
,”
Curr. Opin. Colloid.
43
,
26
38
(
2019
).
83.
H. S.
Joyner
, “
Nonlinear (large-amplitude oscillatory shear) rheological properties and their impact on food processing and quality
,”
Annu. Rev. Food Sci. Technol.
12
,
591
609
(
2021
).
84.
E.
García-Tuñón
,
R.
Agrawal
,
B.
Ling
, and
D. J. C.
Dennis
, “
Fourier-transform rheology and printability maps of complex fluids for three-dimensional printing
,”
Phys. Fluids
35
,
017113
(
2023
).
85.
J. D.
Park
and
S. A.
Rogers
, “
Rheological manifestation of microstructural change of colloidal gel under oscillatory shear flow
,”
Phys. Fluids
32
,
063102
(
2020
).
86.
S. A.
Rogers
,
J. D.
Park
, and
C.-W. J.
Lee
, “
Instantaneous dimensionless numbers for transient nonlinear rheology
,”
Rheol. Acta
58
,
539
556
(
2019
).
87.
M. Y.
Erturk
,
S. A.
Rogers
, and
J.
Kokini
, “
Comparison of sequence of physical processes (SPP) and Fourier transform coupled with Chebyshev polynomials (FTC) methods to interpret large amplitude oscillatory shear (LAOS) response of viscoelastic doughs and viscous pectin solution
,”
Food Hydrocolloids
128
,
107558
(
2022
).
88.
H.
Giesekus
, “
A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility
,”
J. Non-Newtonian Fluid Mech.
11
,
69
109
(
1982
).
89.
A.
Kate Gurnon
and
N. J.
Wagner
, “
Large amplitude oscillatory shear (LAOS) measurements to obtain constitutive equation model parameters: Giesekus model of banding and nonbanding wormlike micelles
,”
J. Rheol.
56
,
333
351
(
2012
).
90.
M. E.
Helgeson
,
P. A.
Vasquez
,
E. W.
Kaler
, and
N. J.
Wagner
, “
Rheology and spatially resolved structure of cetyltrimethylammonium bromide wormlike micelles through the shear banding transition
,”
J. Rheol.
53
,
727
756
(
2009
).
91.
P.
Saramito
, “
A new constitutive equation for elastoviscoplastic fluid flows
,”
J. Non-Newtonian Fluid Mech.
145
,
1
14
(
2007
).
You do not currently have access to this content.