The swimming motility of bacteria is driven by the action of bacterial flagellar motors, whose outermost structure is a long and thin helicoidal filament. When rotated, the fluid medium exerts an anisotropic viscous drag on the flagellar filaments, ultimately leading to bacterial propulsion. The flagellar filaments are protein-based flexible structures that can break due to interactions with fluid flows. Here, we study the evolution of flagellar filaments in the soil bacterium Bradyrhizobium diazoefficiens after being exposed to shear flows created in long microchannels, for shear rates between 1 and , and for durations between tens of milliseconds and minutes. We demonstrate that the average swimming speed and fraction of swimming cells decrease after exposition to shear, but both parameters can recover, at least partially, with time. These observations support the hypothesis that shear flows cut flagellar filaments but that reversibly damaged bacterial flagellar motors can be restored, thanks to filament regeneration. By fitting our observations with phenomenological expressions, we obtain the individual growth rates of the two different flagellar filaments that B. diazoefficiens possesses, showing that the lateral filaments have a recovery time of about 40 min while the subpolar one requires more than 4.5 h to regrow. Our work demonstrates that simple monitoring of bacterial motility after exposition to shear can be used to characterize the process of flagellar filament breakup and growth, a phenomenon widely present in bacteria swimming in porous soil and exposed to shear flows due to rainfall and watering systems.
Skip Nav Destination
Damage and recovery of flagella in soil bacteria exposed to shear within long microchannels
,
,
,
,
Article navigation
January 2025
Research Article|
January 24 2025
Damage and recovery of flagella in soil bacteria exposed to shear within long microchannels
Available to Purchase
Juan Pablo Carrillo-Mora
;
Juan Pablo Carrillo-Mora
a)
(Conceptualization, Formal analysis, Investigation, Methodology, Writing – original draft, Writing – review & editing)
1
Departamento de Física—Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile
, Santiago, Chile
Search for other works by this author on:
Moniellen Pires Monteiro
;
Moniellen Pires Monteiro
(Conceptualization, Supervision)
1
Departamento de Física—Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile
, Santiago, Chile
Search for other works by this author on:
Aníbal R. Lodeiro
;
Aníbal R. Lodeiro
(Conceptualization, Writing – review & editing)
2
Instituto de Biotecnología y Biología Molecular—Facultad de Ciencias Exactas and CCT-La Plata CONICET, Universidad Nacional de La Plata
, La Plata, Argentina
3
Laboratorio de Genética—Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata
, La Plata, Argentina
Search for other works by this author on:
V. I. Marconi
;
V. I. Marconi
(Conceptualization, Software, Writing – review & editing)
4
Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba
, Córdoba, Argentina
5
IFEG-CONICET
, X5000HUA Córdoba, Argentina
Search for other works by this author on:
María Luisa Cordero
María Luisa Cordero
b)
(Conceptualization, Supervision, Writing – original draft, Writing – review & editing)
1
Departamento de Física—Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile
, Santiago, Chile
b)Author to whom correspondence should be addressed: [email protected]
Search for other works by this author on:
Juan Pablo Carrillo-Mora
1,a)
Moniellen Pires Monteiro
1
Aníbal R. Lodeiro
2,3
V. I. Marconi
4,5
María Luisa Cordero
1,b)
1
Departamento de Física—Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile
, Santiago, Chile
2
Instituto de Biotecnología y Biología Molecular—Facultad de Ciencias Exactas and CCT-La Plata CONICET, Universidad Nacional de La Plata
, La Plata, Argentina
3
Laboratorio de Genética—Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata
, La Plata, Argentina
4
Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba
, Córdoba, Argentina
5
IFEG-CONICET
, X5000HUA Córdoba, Argentina
b)Author to whom correspondence should be addressed: [email protected]
a)
Present address: Departament de Física de la Matèria Condensada and UBICS University of Barcelona Institute of Complex Systems, Universitat de Barcelona, Barcelona, Spain. Electronic mail: [email protected]
Physics of Fluids 37, 012027 (2025)
Article history
Received:
November 21 2024
Accepted:
January 01 2025
Citation
Juan Pablo Carrillo-Mora, Moniellen Pires Monteiro, Aníbal R. Lodeiro, V. I. Marconi, María Luisa Cordero; Damage and recovery of flagella in soil bacteria exposed to shear within long microchannels. Physics of Fluids 1 January 2025; 37 (1): 012027. https://doi.org/10.1063/5.0249990
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
99
Views
Citing articles via
Phase behavior of Cacio e Pepe sauce
G. Bartolucci, D. M. Busiello, et al.
Chinese Academy of Science Journal Ranking System (2015–2023)
Cruz Y. Li (李雨桐), 李雨桐, et al.
Direct numerical simulations of immiscible two-phase flow in rough fractures: Impact of wetting film resolution
R. Krishna, Y. Méheust, et al.
Related Content
A novel computational approach to simulate microswimmers propelled by bacterial flagella
Physics of Fluids (November 2021)
Biotemplated flagellar nanoswimmers
APL Mater. (November 2017)
Propulsion contribution from individual filament in a flagellar bundle
Appl. Phys. Lett. (February 2025)
Scanning tunneling microscopy of bacterial flagella
J. Vac. Sci. Technol. B (March 1991)
Modeling of stochastic motion of bacteria propelled spherical microbeads
J. Appl. Phys. (June 2011)