The swimming motility of bacteria is driven by the action of bacterial flagellar motors, whose outermost structure is a long and thin helicoidal filament. When rotated, the fluid medium exerts an anisotropic viscous drag on the flagellar filaments, ultimately leading to bacterial propulsion. The flagellar filaments are protein-based flexible structures that can break due to interactions with fluid flows. Here, we study the evolution of flagellar filaments in the soil bacterium Bradyrhizobium diazoefficiens after being exposed to shear flows created in long microchannels, for shear rates between 1 and 105s1, and for durations between tens of milliseconds and minutes. We demonstrate that the average swimming speed and fraction of swimming cells decrease after exposition to shear, but both parameters can recover, at least partially, with time. These observations support the hypothesis that shear flows cut flagellar filaments but that reversibly damaged bacterial flagellar motors can be restored, thanks to filament regeneration. By fitting our observations with phenomenological expressions, we obtain the individual growth rates of the two different flagellar filaments that B. diazoefficiens possesses, showing that the lateral filaments have a recovery time of about 40 min while the subpolar one requires more than 4.5 h to regrow. Our work demonstrates that simple monitoring of bacterial motility after exposition to shear can be used to characterize the process of flagellar filament breakup and growth, a phenomenon widely present in bacteria swimming in porous soil and exposed to shear flows due to rainfall and watering systems.

1.
T.
Minamino
and
K.
Imada
, “
The bacterial flagellar motor and its structural diversity
,”
Trends Microbiol.
23
,
267
274
(
2015
).
2.
R. M.
Macnab
, “
How bacteria assemble flagella
,”
Annu. Rev. Microbiol.
57
,
77
100
(
2003
).
3.
T. T.
Renault
,
A. O.
Abraham
,
T.
Bergmiller
,
G.
Paradis
,
S.
Rainville
,
E.
Charpentier
,
C. C.
Guet
,
Y.
Tu
,
K.
Namba
,
J. P.
Keener
,
T.
Minamino
, and
M.
Erhardt
, “
Bacterial flagella grow through an injection-diffusion mechanism
,”
Elife
6
,
e23136
(
2017
).
4.
M.
Chen
,
Z.
Zhao
,
J.
Yang
,
K.
Peng
,
M. A. B.
Baker
,
F.
Bai
, and
C.-J.
Lo
, “
Length-dependent flagellar growth of Vibrio alginolyticus revealed by real time fluorescent imaging
,”
Elife
6
,
e22140
(
2017
).
5.
E.
Lauga
and
T. R.
Powers
, “
The hydrodynamics of swimming microorganisms
,”
Rep. Prog. Phys.
72
,
096601
(
2009
).
6.
E. M.
Purcell
, “
Life at low Reynolds number
,”
Am. J. Phys.
45
,
3
11
(
1977
).
7.
J. J. L.
Higdon
, “
A hydrodynamic analysis of flagellar propulsion
,”
J. Fluid Mech.
90
,
685
711
(
1979
).
8.
J. J. L.
Higdon
, “
The hydrodynamics of flagellar propulsion: Helical waves
,”
J. Fluid Mech.
94
,
331
351
(
1979
).
9.
S. E.
Spagnolie
and
E.
Lauga
, “
The optimal elastic flagellum
,”
Phys. Fluids
22
,
031901
(
2010
).
10.
F.-H.
Qin
,
W.-X.
Huang
, and
H. J.
Sung
, “
Simulation of small swimmer motions driven by tail/flagellum beating
,”
Comput. Fluids
55
,
109
117
(
2012
).
11.
B.
Liu
,
K. S.
Breuer
, and
T. R.
Powers
, “
Propulsion by a helical flagellum in a capillary tube
,”
Phys. Fluids
26
,
011701
(
2014
).
12.
F. T. M.
Nguyen
and
M. D.
Graham
, “
Impacts of multiflagellarity on stability and speed of bacterial locomotion
,”
Phys. Rev. E
98
,
042419
(
2018
).
13.
I.
Lisevich
,
R.
Colin
,
H. Y.
Yang
,
B.
Ni
, and
V.
Sourjik
, “
Physics and physiology determine strategies of bacterial investment in flagellar motility
,” bioRxiv (
2024
).
14.
L.
Turner
,
A. S.
Stern
, and
H. C.
Berg
, “
Growth of flagellar filaments of Escherichia coli is independent of filament length
,”
J. Bacteriol.
194
,
2437
2442
(
2012
).
15.
G.
Paradis
,
F. F. V.
Chevance
,
W.
Liou
,
T. T.
Renault
,
K. T.
Hughes
,
S.
Rainville
, and
M.
Erhardt
, “
Variability in bacterial flagella re-growth patterns after breakage
,”
Sci. Rep.
7
,
1282
(
2017
).
16.
G.
Catroux
,
A.
Hartmann
, and
C.
Revellin
, “
Trends in rhizobial inoculant production and use
,”
Plant Soil
230
,
21
30
(
2001
).
17.
J. I.
Quelas
,
M. J.
Althabegoiti
,
C.
Jimenez-Sanchez
,
A. A.
Melgarejo
,
V. I.
Marconi
,
E. J.
Mongiardini
,
S. A.
Trejo
,
F.
Mengucci
,
J.-J.
Ortega-Calvo
, and
A. R.
Lodeiro
, “
Swimming performance of Bradyrhizobium diazoefficiens is an emergent property of its two flagellar systems
,”
Sci. Rep.
6
,
23841
(
2016
).
18.
D.
Garrido-Sanz
,
M.
Redondo-Nieto
,
E.
Mongiardini
,
E.
Blanco-Romero
,
D.
Durán
,
J. I.
Quelas
,
M.
Martin
,
R.
Rivilla
,
A. R.
Lodeiro
, and
M. J.
Althabegoiti
, “
Phylogenomic analyses of Bradyrhizobium reveal uneven distribution of the lateral and subpolar flagellar systems, which extends to Rhizobiales
,”
Microorganisms
7
,
50
(
2019
).
19.
F.
Mengucci
,
C.
Dardis
,
E. J.
Mongiardini
,
M. J.
Althabegoiti
,
J. D.
Partridge
,
S.
Kojima
,
M.
Homma
,
J. I.
Quelas
, and
A. R.
Lodeiro
, “
Characterization of FliL proteins in Bradyrhizobium diazoefficiens: Lateral FliL supports swimming motility, and subpolar FliL modulates the lateral flagellar system
,”
J. Bacteriol.
202
,
10
1128
(
2020
).
20.
M. J.
Althabegoiti
,
J. M.
Covelli
,
J.
Pérez-Giménez
,
J. I.
Quelas
,
E. J.
Mongiardini
,
M. F.
López
,
S. L.
López-García
, and
A. R.
Lodeiro
, “
Analysis of the role of the two flagella of Bradyrhizobium japonicum in competition for nodulation of soybean
,”
FEMS Microbiol. Lett.
319
,
133
139
(
2011
).
21.
N.
Gutierrez
and
V. I.
Marconi (advisor)
, “
Bacteria motility on artificial soils
,” Master's thesis (
Universidad Nacional de Córdoba
,
Argentina
,
2023
). http://hdl.handle.net/11086/549799
22.
M.
Pires Monteiro
,
J. P.
Carrillo
,
N.
Gutiérrez
,
S.
Montagna
,
A. R.
Lodeiro
,
M. L.
Cordero
, and
V. I.
Marconi
, “
Soils-on-a-chip reveal unforeseen motility parameters of microconfined Bradyrhizobium diazoefficiens
,”
bioRxiv
(
2023
).
23.
H. N.
Moyano Cortéz
and
V. I.
Marconi (advisor)
, “
Bacteria dynamics on micro-designed substrates
,” Master's thesis (
Universidad Nacional de Córdoba
,
Argentina
,
2014
). http://hdl.handle.net/11086/2772
24.
S.
Montagna
and
V. I.
Marconi (advisor)
, “
Soil bacteria dynamics
,” Master's thesis (
Universidad Nacional de Córdoba
,
Argentina
,
2018
). http://hdl.handle.net/11086/6220
25.
C.
Dardis
,
J. I.
Quelas
,
F.
Mengucci
,
M. J.
Althabegoiti
,
A. R.
Lodeiro
, and
E. J.
Mongiardini
, “
Dual control of flagellar synthesis and exopolysaccharide production by FlbD-FliX class II regulatory proteins in Bradyrhizobium diazoefficiens
,”
J. Bacteriol.
203
,
e00403-20
(
2021
).
26.
J.
Beal
,
N. G.
Farny
,
T.
Haddock-Angelli
,
V.
Selvarajah
,
G. S.
Baldwin
,
R.
Buckley-Taylor
,
M.
Gershater
,
D.
Kiga
,
J.
Marken
,
V.
Sanchania
,
A.
Sison
,
C. T.
Workman
,
and iGEM Interlab Study Contributors
, “
Robust estimation of bacterial cell count from optical density
,”
Commun. Biol.
3
,
512
(
2020
).
27.
P.
Jiang
,
Y.
Ye
,
J.
Liu
, and
F.
Wang
, “
Metformin promotes bacterial surface aggregation by inhibiting the swimming motility of flagellated Escherichia coli
,”
J. Basic Microbiol.
63
,
897
908
(
2023
).
28.
R.
Menon
,
A.
Patel
,
D.
Gil
, and
H. I.
Smith
, “
Maskless lithography
,”
Mater. Today
8
,
26
33
(
2005
).
29.
D.
Qin
,
Y.
Xia
, and
G. M.
Whitesides
, “
Soft lithography for micro- and nanoscale patterning
,”
Nat. Protoc.
5
,
491
(
2010
).
30.
N.
Figueroa-Morales
,
G. L.
Miño
,
A.
Rivera
,
R.
Caballero
,
E.
Clément
,
E.
Altshuler
, and
A.
Lindner
, “
Living on the edge: Transfer and traffic of E. coli in a confined flow
,”
Soft Matter
11
,
6284
6293
(
2015
).
31.
J.
Schindelin
,
I.
Arganda-Carreras
,
E.
Frise
,
V.
Kaynig
,
M.
Longair
,
T.
Pietzsch
,
S.
Preibisch
,
C.
Rueden
,
S.
Saalfeld
,
B.
Schmid
,
J.-Y.
Tinevez
,
D. J.
White
,
V.
Hartenstein
,
K.
Eliceiri
,
P.
Tomancak
, and
A.
Cardona
, “
Fiji: An open-source platform for biological-image analysis
,”
Nat. Methods
9
,
676
682
(
2012
).
32.
J. A.
Sánchez
,
P. A.
Pury
, and
V. I.
Marconi
, “
Un algoritmo modular para el seguimiento de partículas en videos de microscopía
,”
Mec. Comput.
34
,
3443
3450
(
2016
); available at http://venus.santafe-conicet.gov.ar/ojs/index.php/mc/article/viewFile/5214/5145.
33.
M. G.
Reyes
and
J. A.
Sánchez (advisor)
, “
Particle tracking on videos of microscopy
,” Master's thesis (
Universidad Nacional de Córdoba
,
Argentina
,
2017
). http://hdl.handle.net/11086/6013
34.
M. G.
Reyes
,
J. A.
Sanchez
, and
V. I.
Marconi
, see https://github.com/jadrs/biotracker for “
Biotracker Open Source Software: Microswimmer Tracker with Automatic Quantification of Change of Directions
” (
2017
).
35.
G.
Miño
,
T. E.
Mallouk
,
T.
Darnige
,
M.
Hoyos
,
J.
Dauchet
,
J.
Dunstan
,
R.
Soto
,
Y.
Wang
,
A.
Rousselet
, and
E.
Clément
, “
Enhanced diffusion due to active swimmers at a solid surface
,”
Phys. Rev. Lett.
106
,
048102
(
2011
).
36.
J. R.
Howse
,
R. A. L.
Jones
,
A. J.
Ryan
,
T.
Gough
,
R.
Vafabakhsh
, and
R.
Golestanian
, “
Self-motile colloidal particles: From directed propulsion to random walk
,”
Phys. Rev. Lett.
99
,
048102
(
2007
).
37.
K.
Martens
,
L.
Angelani
,
R.
Di Leonardo
, and
L.
Bocquet
, “
Probability distributions for the run-and-tumble bacterial dynamics: An analogy to the Lorentz model
,”
Eur. Phys. J. E
35
,
84
(
2012
).
38.
D. S.
Martin
,
M. B.
Forstner
, and
J. A.
Käs
, “
Apparent subdiffusion inherent to single particle tracking
,”
Biophys. J.
83
,
2109
2117
(
2002
).
39.
Y.
Magariyama
,
S.
Sugiyama
,
K.
Muramoto
,
I.
Kawagishi
,
Y.
Imae
, and
S.
Kudo
, “
Simultaneous measurement of bacterial flagellar rotation rate and swimming speed
,”
Biophys. J.
69
,
2154
2162
(
1995
).
40.
C.
Cogo
,
J.
Pérez-Giménez
,
C. B.
Rajeswari
,
M. F.
Luna
, and
A. R.
Lodeiro
, “
Induction by Bradyrhizobium diazoefficiens of different pathways for growth in D-mannitol or L-arabinose leading to pronounced differences in CO2 fixation, O2 consumption, and lateral flagellum production
,”
Front. Microbiol.
9
,
1189
(
2018
).
41.
E.
Altshuler
,
G.
Miño
,
C.
Pérez-Penichet
,
L.
Del Río
,
A.
Lindner
,
A.
Rousselet
, and
E.
Clément
, “
Flow-controlled densification and anomalous dispersion of E. coli through a constriction
,”
Soft Matter
9
,
1864
1870
(
2013
).
42.
D.
Scheidweiler
,
F.
Miele
,
H.
Peter
,
T. J.
Battin
, and
P.
de Anna
, “
Trait-specific dispersal of bacteria in heterogeneous porous environments: From pore to porous medium scale
,”
J. R. Soc. Interface
17
,
20200046
(
2020
).
43.
C.
Bechinger
,
R.
Di Leonardo
,
H.
Löwen
,
C.
Reichhardt
,
G.
Volpe
, and
G.
Volpe
, “
Active particles in complex and crowded environments
,”
Rev. Mod. Phys.
88
,
045006
(
2016
).
44.
P.
Galajda
,
J.
Keymer
,
P.
Chaikin
, and
R.
Austin
, “
A wall of funnels concentrates swimming bacteria
,”
J. Bacteriol.
189
,
8704
8707
(
2007
).
45.
M. B.
Wan
,
C. J.
Olson Reichhardt
,
Z.
Nussinov
, and
C.
Reichhardt
, “
Rectification of swimming bacteria and self-driven particle systems by arrays of asymmetric barriers
,”
Phys. Rev. Lett.
101
,
018102
(
2008
).
46.
I.
Berdakin
,
Y.
Jeyaram
,
V. V.
Moshchalkov
,
L.
Venkel
,
S.
Dierckx
,
S. J.
Vanderleyden
,
A. V.
Silhanek
,
C. A.
Condat
, and
V. I.
Marconi
, “
Influence of swimming strategy on microorganism separation by asymmetric obstacles
,”
Phys. Rev. E
87
,
052702
(
2013
).
47.
I.
Berdakin
,
A. V.
Silhanek
,
H. N.
Moyano Cortéz
,
V. I.
Marconi
, and
C. A.
Condat
, “
Quantifying the sorting efficiency of self-propelled run-and-tumble swimmers by geometrical ratchets
,”
Cent. Eur. J. Phys.
11
,
1653
1661
(
2013
).
48.
C. J.
Olson Reichhardt
and
C.
Reichhardt
, “
Ratchet effects in active matter systems
,”
Annu. Rev. Condens. Matter Phys.
8
,
51
75
(
2017
).
49.
R.
Di Leonardo
,
L.
Angelani
,
D.
Dell'Arciprete
,
G.
Ruocco
,
V.
Iebba
,
S.
Schippa
,
M. P.
Conte
,
F.
Mecarini
,
F.
De Angelis
, and
E.
di Fabrizio
, “
Bacterial ratchet motors
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
9541
9545
(
2010
).
50.
A.
Sokolov
,
M. M.
Apodaca
,
B. A.
Grzybowski
, and
I. S.
Aranson
, “
Swimming bacteria power microscopic gears
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
969
974
(
2010
).
51.
B.
Vincenti
,
G.
Ramos
,
M. L.
Cordero
,
C.
Douarche
,
R.
Soto
, and
E.
Clément
, “
Magnetotactic bacteria in a droplet self-assemble into a rotary motor
,”
Nat. Commun.
10
,
5082
(
2019
).
You do not currently have access to this content.