Through molecular dynamics (MD) simulations, the collision of two unequal-size droplets with various diameter ratios (Δ) is elaborately scrutinized over a wide range of impact Weber numbers (We). The dynamic evolutions are carefully observed via visual software, which is found to be very different compared with equal-size collisions. The spreading hysteresis is observed over a full spectrum of We for unequal-size collisions because of the merged droplets experiencing wave-capillary propagation, which is commonly seen at the macro-scale. The merged droplet is always directionally moving toward the negative x-direction, resulting from the existence of an energy difference between two collisional droplets. The variation of Δ and We on unequal-size-induced directional movement is discussed in detail by recording the mass-center variation of merged droplets at different given conditions. The maximum spreading factor of merged droplets, βmax, co, has been discussed by involving Δ into the energy-balance equation. Although the predicted results are slightly lower than MD simulations, this is still the most suitable mode due to the different energy dissipation mechanisms at the nanoscale. How Δ affects the off-center collisions is examined by observing collisional dynamics and drawing phase diagrams with respect to three important characteristic parameters (We, B, and Δ). Finally, we establish a theoretical model for predicting the boundary between coalescence and stretched separation, which agrees well with data extracted from MD simulations. This work paves the way to understand the collision with two unequal-size nanodroplets and provides guidance for nanoscale applications.

1.
J. R.
Adam
,
N. R.
Lindblad
, and
C. D.
Hendricks
, “
The collision, coalescence, and disruption of water droplets
,”
J. Appl. Phys.
39
,
5173
5180
(
1968
).
2.
N.
Ashgriz
and
J. Y.
Poo
, “
Coalescence and separation in binary collisions of liquid drops
,”
J. Fluid Mech.
221
,
183
204
(
1990
).
3.
Y. J.
Jiang
,
A.
Umemura
, and
C. K.
Law
, “
An experimental investigation on the collision behaviour of hydrocarbon droplets
,”
J. Fluid Mech.
234
,
171
190
(
1992
).
4.
K. L.
Pan
,
P. C.
Chou
, and
Y. J.
Tseng
, “
Binary droplet collision at high Weber number
,”
Phys. Rev. E
80
,
036301
(
2009
).
5.
A. L.
Yarin
, “
Drop impact dynamics: Splashing, spreading, receding, bouncing…
,”
Annu. Rev. Fluid Mech.
38
,
159
192
(
2006
).
6.
C. K.
Kuan
,
K. L.
Pan
, and
W.
Shyy
, “
Study on high-Weber-number droplet collision by a parallel, adaptive interface-tracking method
,”
J. Fluid Mech.
759
,
104
133
(
2014
).
7.
D.
Lycett-Brown
,
K. H.
Luo
,
R.
Liu
, and
P.
Lv
, “
Binary droplet collision simulations by a multiphase cascaded lattice Boltzmann method
,”
Phys. Fluids
26
,
023303
(
2014
).
8.
K. H.
Al-Dirawi
,
K. H.
Al-Ghaithi
,
T. C.
Sykes
,
J. R.
Castrejón-Pita
, and
A. E.
Bayly
, “
Inertial stretching separation in binary droplet collisions
,”
J. Fluid Mech.
927
,
A9
(
2021
).
9.
T.
Hawa
and
M. R.
Zachariah
, “
Coalescence kinetics of unequal sized nanoparticles
,”
J. Aerosol Sci.
37
,
1
15
(
2006
).
10.
Y. F.
Wang
,
Y. B.
Wang
,
Z. H.
Cai
,
Q.
Ma
,
Y. R.
Yang
,
S. F.
Zheng
,
D. J.
Lee
, and
X. D.
Wang
, “
Binary collision dynamics of equal-sized nanodroplets
,”
J. Fluid Mech.
979
,
A25
(
2024
).
11.
Y. R.
Zhang
and
K. H.
Luo
, “
Regimes of head-on collisions of equal-sized binary droplets
,”
Langmuir
35
,
8896
8902
(
2019
).
12.
H.
Mertaniemi
,
R.
Forchheimer
,
O.
Ikkala
, and
R. H. A.
Ras
, “
Rebounding droplet‐droplet collisions on superhydrophobic surfaces: From the phenomenon to droplet logic
,”
Adv. Mater.
24
,
5738
5743
(
2012
).
13.
J.
Qian
and
C. K.
Law
, “
Regimes of coalescence and separation in droplet collision
,”
J. Fluid Mech.
331
,
59
80
(
1997
).
14.
K. L.
Pan
,
K. L.
Huang
,
W. T.
Hsieh
, and
C. R.
Lu
, “
Rotational separation after temporary coalescence in binary droplet collisions
,”
Phys. Rev. Fluids
4
,
123602
(
2019
).
15.
X.
He
,
S. L.
Wang
,
Y. R.
Yang
,
X. D.
Wang
, and
J. Q.
Chen
, “
Electro-coalescence of two charged droplets under pulsed direct current electric fields with various waveforms: A molecular dynamics study
,”
J. Mol. Liq.
312
,
113429
(
2020
).
16.
X.
He
,
B. X.
Zhang
,
S. L.
Wang
,
Y. F.
Wang
,
Y. R.
Yang
,
X. D.
Wang
, and
D. J.
Lee
, “
Electrocoalescence of two charged nanodroplets under different types of external electric fields
,”
J. Mol. Liq.
341
,
117417
(
2021
).
17.
X.
Chen
and
V.
Yang
, “
Direct numerical simulation of multiscale flow physics of binary droplet collision
,”
Phys. Fluids
32
,
062103
(
2020
).
18.
K.
Willis
and
M.
Orme
, “
Binary droplet collisions in a vacuum environment: An experimental investigation of the role of viscosity
,”
Exp. Fluids
34
,
28
41
(
2003
).
19.
M.
Sommerfeld
and
M.
Kuschel
, “
Modelling droplet collision outcomes for different substances and viscosities
,”
Exp. Fluids
57
,
187
(
2016
).
20.
R. H.
Chen
,
W. C.
Wang
, and
Y. W.
Chen
, “
Like-drop collisions of biodiesel and emulsion diesel
,”
Eur. J. Mech.-B/Fluids
60
,
62
69
(
2016
).
21.
C.
Tang
,
P.
Zhang
, and
C. K.
Law
, “
Bouncing, coalescence, and separation in head-on collision of unequal-size droplets
,”
Phys. Fluids
24
,
022101
(
2012
).
22.
A.
Munnannur
and
R. D.
Reitz
, “
A new predictive model for fragmenting and non-fragmenting binary droplet collisions
,”
Int. J. Multiphase Flow
33
,
873
896
(
2007
).
23.
S.
Chowdhary
,
S. R.
Reddy
, and
R.
Banerjee
, “
Detailed numerical simulations of unequal sized off-centre binary droplet collisions
,”
Int. J. Multiphase Flow
128
,
103267
(
2020
).
24.
H.
Cong
,
L.
Qian
,
Y.
Wang
, and
J.
Lin
, “
Numerical simulation of the collision behaviors of binary unequal-sized droplets at high Weber number
,”
Phys. Fluids
32
,
103307
(
2020
).
25.
M. H.
Taheri
,
M.
Mohammadpourfard
,
A. K.
Sadaghiani
, and
A.
Kosar
, “
Wettability alterations and magnetic field effects on the nucleation of magnetic nanofluids: A molecular dynamics simulation
,”
J. Mol. Liq.
260
,
209
220
(
2018
).
26.
F.
Taherian
,
V.
Marcon
,
E.
Bonaccurso
, and
N. F. A.
van der Vegt
, “
Vortex formation in coalescence of droplets with a reservoir using molecular dynamics simulations
,”
J. Colloid Interface Sci.
479
,
189
198
(
2016
).
27.
Y.
Li
,
J.
Xu
, and
D.
Li
, “
Molecular dynamics simulation of nanoscale liquid flows
,”
Microfluid. Nanofluid.
9
,
1011
1031
(
2010
).
28.
Y. F.
Wang
,
Y. B.
Wang
,
F. F.
Xie
,
J. Y.
Liu
,
S. L.
Wang
,
Y. R.
Yang
,
S. R.
Gao
, and
X. D.
Wang
, “
Spreading and retraction kinetics for impact of nanodroplets on hydrophobic surfaces
,”
Phys. Fluids
32
,
092005
(
2020
).
29.
J. R.
Choudhuri
and
P.
Nath
, “
Wetting transition of a nanodrop on switchable hydrophilic-hydrophobic surfaces
,”
Surf. Interfaces
21
,
100628
(
2020
).
30.
A.
Zhang
,
K.
Cui
,
Y.
Tian
,
B.
Zhang
,
T.
Wang
, and
X.
He
, “
Oblique impingement of binary droplets at the nanoscale on superhydrophobic surfaces: A molecular dynamics study
,”
J. Chem. Phys.
160
,
174311
(
2024
).
31.
Y. B.
Wang
,
X. D.
Wang
,
Y. R.
Yang
, and
M.
Chen
, “
The maximum spreading factor for polymer nanodroplets impacting a hydrophobic solid surface
,”
J. Phys. Chem. C
123
,
12841
12850
(
2019
).
32.
Q.
Ma
,
Y. F.
Wang
,
Y. B.
Wang
,
X.
He
,
S. F.
Zheng
,
Y. R.
Yang
,
X. D.
Wang
, and
D. J.
Lee
, “
Phase diagram for nanodroplet impact on solid surfaces
,”
Phys. Fluids
33
,
102007
(
2021
).
33.
Y. R.
Zhang
,
Z.
Zhao
,
K. H.
Luo
, and
B.
Shi
, “
Size effects on dynamics of nanodroplets in binary head-on collisions
,”
J. Mol. Liq.
341
,
117383
(
2021
).
34.
N. N.
Han
,
B. M.
Sun
, and
X.
He
, “
Split of droplets at the nanoscale using mixed- wettability surfaces: A molecular dynamics simulation
,”
Appl. Surf. Sci.
600
,
154025
(
2022
).
35.
N. N.
Han
,
B. Y.
Huang
,
B. M.
Sun
, and
X.
He
, “
Oblique impacts of nanodroplets upon surfaces
,”
Langmuir
38
,
13093
13102
(
2022
).
36.
D.
Khojasteh
,
M.
Kazerooni
,
S.
Salarian
, and
R.
Kamali
, “
Droplet impact on superhydrophobic surfaces: A review of recent developments
,”
J. Ind. Eng. Chem.
42
,
1
14
(
2016
).
37.
P.
Mark
and
L.
Nilsson
, “
Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K
,”
J. Phys. Chem. A
105
,
9954
9960
(
2001
).
38.
S.
Prakash
,
E.
Xi
, and
A. J.
Patel
, “
Spontaneous recovery of superhydrophobicity on nanotextured surfaces
,”
Proc. Natl. Acad. Sci. USA
113
,
5508
5513
(
2016
).
39.
X.
He
,
Y. F.
Wang
,
B. X.
Zhang
,
S. L.
Wang
,
Y. R.
Yang
,
X. D.
Wang
, and
D. J.
Lee
, “
Effects of nanodroplet sizes on wettability, electrowetting transition, and spontaneous dewetting transition on nanopillar-arrayed surfaces
,”
Langmuir
37
,
14571
14581
(
2021
).
40.
V.
Molinero
and
E. B.
Moore
, “
Water modeled as an intermediate element between carbon and silicon
,”
J. Phys. Chem. B
113
,
4008
4016
(
2009
).
41.
X.
He
,
B. X.
Zhang
,
S. L.
Wang
,
Y. F.
Wang
,
Y. R.
Yang
,
X. D.
Wang
, and
D. J.
Lee
, “
The Cassie-to-Wenzel wetting transition of water films on textured surfaces with different topologies
,”
Phys. Fluids
33
,
112006
(
2021
).
42.
A.
Zhang
,
K.
Cui
,
Y.
Tian
,
T.
Wang
, and
X.
He
, “
Dynamic characteristics of impacting binary nanodroplets on solid surfaces: From hydrophobic to superhydrophobic
,”
J. Mol. Liq.
389
,
122873
(
2023
).
43.
X.
He
,
B. X.
Zhang
,
S. L.
Wang
,
Y. F.
Wang
,
Y. R.
Yang
,
X. D.
Wang
, and
D. L.
Lee
, “
Electrowetting-based control of wetting transition of a nanodroplet on pillar-arrayed surfaces
,”
J. Mol. Liq.
345
,
117049
(
2022
).
44.
N.
Nikolopoulos
and
G.
Bergeles
, “
The effect of gas and liquid properties and droplet size ratio on the central collision between two unequal-size droplets in the reflexive regime
,”
Int. J. Heat Mass Transfer
54
,
678
691
(
2011
).
45.
B. X.
Li
,
X. H.
Li
, and
M.
Chen
, “
Spreading and breakup of nanodroplet impinging on surface
,”
Phys. Fluids
29
,
012003
(
2017
).
46.
S.
Wildeman
,
C. W.
Visser
,
C.
Sun
, and
D.
Lohse
, “
On the spreading of impacting drops
,”
J. Fluid Mech.
805
,
636
655
(
2016
).
47.
X.
He
,
K.
Cui
,
W. H.
Dong
,
X. J.
Zhang
,
Z. F.
Zhou
, and
S. L.
Wang
, “
Investigation of dynamic characteristics of impacting nanodroplets on solid surfaces decorated with a stepped texture
,”
Colloids Surf., A
670
,
131581
(
2023
).
You do not currently have access to this content.