Plant-based cheeses provide an environmentally friendly alternative to traditional dairy, often incorporating coconut oil to mimic the texture of animal fat. This study examines the influence of protein properties on the functionality of plant-based cheeses. Previous research has determined that a blend of 25% coconut oil (CO) and 75% sunflower oil using pea protein 1 (PP1) produces a cheese with high hardness, melt, oil loss, and stretch when compared to the same cheese made with 100% CO. This study assessed another pea protein isolate, a faba protein isolate (FP1), and a lentil protein isolate, at a concentration of 7.5% (w/w) to evaluate their effect on the cheese physical characteristics. Texture profile analysis revealed that the hardness of cheeses increased with higher amounts of coconut oil; however, the cheese formulated with PP1 and 25% CO exhibited the firmest texture of 80 N due to unique protein-fat interactions, which was similar to the hardness of 100 N at 100% coconut oil. The cheese analogs made with 25% CO and PP1 either matched or surpassed the melt, oil loss, and stretch of the cheese analogs products prepared with the same proteins with 100% CO. The rheological properties of the cheeses were assessed between 20 °C and 95 °C, using tan δ (G″/G′) and complex viscosity (η*) at 95 °C as functionality indicators. These results suggest that specific protein-fat interactions can be tuned to achieve the desired hardness while preserving functional properties and potentially improving the sustainability and health benefits of the final product.

1.
L.
Grossmann
and
D. J.
McClements
, “
The science of plant-based foods: Approaches to create nutritious and sustainable plant-based cheese analogs
,”
Trends Food Sci. Technol.
118
,
207
229
(
2021
).
2.
A. G. A.
,
Y. M. F.
Moreno
, and
B. A. M.
Carciofi
, “
Plant proteins as high-quality nutritional source for human diet
,”
Trends Food Sci. Technol.
97
,
170
184
(
2020
).
3.
A. G. A.
,
Y. M. F.
Moreno
, and
B. A. M.
Carciofi
, “
Food processing for the improvement of plant proteins digestibility
,”
Crit. Rev. Food Sci. Nutr.
60
(
20
),
3367
3386
(
2020
).
4.
Q.
Fu
,
J.
Zhao
,
S.
Rong
,
Y.
Han
,
F.
Liu
,
Q.
Chu
,
S.
Wang
, and
S.
Chen
, “
Research advances in plant protein-based products: protein sources, processing technology, and food applications
,”
J. Agric. Food Chem.
71
(
42
),
15429
15444
(
2023
).
5.
S.
Kumari
,
A. N.
Alam
,
M. J.
Hossain
,
E. Y.
Lee
,
Y. H.
Hwang
, and
S. T.
Joo
, “
Sensory evaluation of plant-based meat: Bridging the gap with animal meat, challenges and future prospects
,”
Foods
13
(
1
),
108
(
2023
).
6.
M.
Lonnie
and
A. M.
Johnstone
, “
The public health rationale for promoting plant protein as an important part of a sustainable and healthy diet
,”
Nutr. Bull.
45
(
3
),
281
293
(
2020
).
7.
S. J.
Park
,
T. W.
Kim
, and
B.-K.
Baik
, “
Relationship between proportion and composition of albumins, and in vitro protein digestibility of raw and cooked pea seeds (Pisum sativum L)
,”
J. Sci. Food Agric.
90
(
10
),
1719
1725
(
2010
).
8.
M. C.
Tulbek
,
R. S. H.
Lam
,
Y. (.
Wang
,
P.
Asavajaru
, and
A.
Lam
, “
Chapter 9 - Pea: A sustainable vegetable protein crop
,” in
Sustainable Protein Sources
(
Elsevier
,
2017
), pp.
145
164
.
9.
R. P.
Zentner
,
G. P.
Lafond
,
D. A.
Derksen
,
C. N.
Nagy
,
D. D.
Wall
, and
W. E.
May
, “
Effects of tillage method and crop rotation on non-renewable energy use efficiency for a thin Black Chernozem in the Canadian Prairies
,”
Soil Tillage Res.
77
(
2
),
125
136
(
2004
).
10.
D.
Martineau-Côté
,
A.
Achouri
,
S.
Karboune
, and
L.
L'Hocine
, “
Faba bean: An untapped source of quality plant proteins and bioactives
,”
Nutrients
14
(
8
),
1541
(
2022
).
11.
S. B.
Dhull
,
J.
Kinabo
, and
M. A.
Uebersax
, “
Nutrient profile and effect of processing methods on the composition and functional properties of lentils (Lens culinaris Medik): A review
,”
Legume Sci.
5
(
1
),
e156
(
2023
).
12.
N. Z.
Lupwayi
and
A. C.
Kennedy
, “
Grain legumes in Northern Great Plains: Impacts on selected biological soil processes
,”
Agron. J.
99
(
6
),
1700
1709
(
2007
).
13.
F. H.
Brishti
,
T.
Mzek
,
N.
Saari
,
E. J.
Rifna
,
M.
Dwivedi
,
K.
Kaur
, and
P.
Kaur
, “
Lentil protein: A sustainable and green alternative to animal meat protein
,” in
Lentils
(
Wiley
,
2023
), pp.
203
235
.
14.
D. F.
Herridge
,
M. B.
Peoples
, and
R. M.
Boddey
, “
Global inputs of biological nitrogen fixation in agricultural systems
,”
Plant Soil
311
(
1–2
),
1
18
(
2008
).
15.
L. K.
Dhillon
,
D.
Lindsay
,
T.
Yang
,
H.
Zakeri
,
B.
Tar'an
,
J. D.
Knight
, and
T. D.
Warkentin
, “
Biological nitrogen fixation potential of pea lines derived from crosses with nodulation mutants
,”
Field Crops Res.
289
,
108731
(
2022
).
16.
B.
Prandi
,
C.
Zurlini
,
C. I.
Maria
,
S.
Cutroneo
,
M.
Di Massimo
,
M.
Bondi
,
A.
Brutti
,
S.
Sforza
, and
T.
Tedeschi
, “
Targeting the nutritional value of proteins from legumes by-products through mild extraction technologies
,”
Front. Nutr.
8
,
695793
(
2021
).
17.
Y.
Cao
and
R.
Mezzenga
, “
Food protein amyloid fibrils: Origin, structure, formation, characterization, applications and health implications
,”
Adv. Colloid Interface Sci.
269
,
334
356
(
2019
).
18.
S.
Dobson
and
A. G.
Marangoni
, “
Methodology and development of a high-protein plant-based cheese alternative
,”
Curr. Res. Food Sci.
7
,
100632
(
2023
).
19.
A. S.
Szczesniak
, “
Correlating sensory with instrumental texture measurements—an overview of recent developments
,”
J. Texture Stud.
18
(
1
),
1
15
(
1987
).
20.
K. D.
Mattice
and
A. G.
Marangoni
, “
Physical properties of plant-based cheese products produced with zein
,”
Food
Hydrocolloids
105
,
105746
(
2020
).
21.
M.
Devezeaux de Lavergne
,
F.
van de Velde
,
M. A. J. S.
van Boekel
, and
M.
Stieger
, “
Dynamic texture perception and oral processing of semi-solid food gels: Part 2: Impact of breakdown behaviour on bolus properties and dynamic texture perception
,”
Food Hydrocolloids
49
,
61
72
(
2015
).
22.
S.
Gasilov
,
M. A.
Webb
,
A.
Panahifar
,
N.
Zhu
,
O.
Marinos
,
T.
Bond
,
D. M. L.
Cooper
, and
D.
Chapman
, “
Hard X-ray imaging and tomography at the biomedical imaging and therapy beamlines of Canadian light source
,”
J. Synchrotron Radiat.
31
(
5
),
1346
1357
(
2024
).
23.
S.
Dobson
,
J.
Stobbs
,
T.
Laredo
, and
A. G.
Marangoni
, “
A facile strategy for plant protein fiber formation without extrusion or shear processing
,”
Innovative Food Sci. Emerging Technol.
86
,
103385
(
2023
).
24.
T.
Faragó
,
S.
Gasilov
,
I.
Emslie
,
M.
Zuber
,
L.
Helfen
,
M.
Vogelgesang
, and
T.
Baumbach
, “
Tofu: A fast, versatile and user-friendly image processing toolkit for computed tomography
,”
J. Synchrotron Radiat.
29
(
3
),
916
927
(
2022
).
25.
J. A.
Stobbs
,
E.
Pensini
,
S. M.
Ghazani
,
A. F. G.
Leontowich
,
A.
Quirk
,
K.
Tu
,
S.
Prévost
,
N.
Mahmoudi
,
A.-L.
Fameau
, and
A. G.
Marangoni
, “
Phospholipid self-assembly in cocoa butter provides a crystallizing surface for seeding the form V polymorph in chocolate
,”
Cryst. Growth Des.
24
(
7
),
2685
2699
(
2024
).
26.
I. R.
Willick
,
J.
Stobbs
,
C.
Karunakaran
, and
K. K.
Tanino
, “
Phenotyping plant cellular and tissue level responses to cold with synchrotron-based Fourier-transform infrared spectroscopy and X-ray computed tomography
,” in
Plant Cold Acclimation: Methods and Protocols
(
Springer US
,
2020
), pp.
141
159
.
27.
F.
Mariotti
,
D.
Tomé
, and
P. P.
Mirand
, “
Converting nitrogen into protein—beyond 6.25 and jones’ factors
,”
Crit. Rev. Food Sci. Nutr.
48
(
2
),
177
184
(
2008
).
28.
C.
Sanders
,
S.
Dobson
, and
A. G.
Marangoni
, “
Effect of saturated and unsaturated fat on the physical properties of plant-based cheese
,”
Curr. Res. Food Sci.
9
,
100832
(
2024
).
29.
D.
Paganin
,
S. C.
Mayo
,
T. E.
Gureyev
,
P. R.
Miller
, and
S. W.
Wilkins
, “
Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object
,”
J. Microsc.
206
(
1
),
33
40
(
2002
).
30.
A. G.
Marangoni
and
S.
Dobson
, WO2024207108 (
2024
).
You do not currently have access to this content.