This paper investigates the dynamics of an encapsulated bubble within a spherical liquid cell that is surrounded by an infinite elastic solid, aiming to enhance our understanding of bubble oscillations, which is crucial for targeted therapeutic release. The Carreau–Yasuda model is used for the surrounding liquid, and a nonlinear neo–Hookean hyperelastic model is used for the shell, replacing a simpler Newtonian liquid and linear shell models. This increased complexity is necessary to accurately capture bubble oscillations in a parameter range where both the non-Newtonian properties of liquid and the nonlinear behavior of the shell are critical. Resonance occurs when the acoustic field's driving frequency matches the natural frequency, thus, amplifying oscillations. The properties of the shell and elastic solid can dampen or amplify these oscillations, depending on their magnitudes and resonance frequency, making it essential to optimize these properties for balanced control and responsiveness in bubble oscillations. The parametric range for the bubble surface area and the wall liquid shear stress is determined for safe biomedical application. The maximum bubble surface area is 4000  μm2 and the maximum wall shear stress is 3000 Pa for the parameters given in this paper. The study also highlights that the damping effect of the power-law index varies with ultrasonic drive frequency, pressure amplitude, Carreau–Yasuda properties, and cavity size, which is not observed for Newtonian fluids.

1.
S.
Kaykanat
and
A.
Uguz
, “
The role of acoustofluidics and microbubble dynamics for therapeutic applications and drug delivery
,”
Biomicrofluidics
17
,
021502
(
2023
).
2.
L.
Fournier
,
T. D. L.
Taille
, and
C.
Chauvierre
, “
Microbubbles for human diagnosis and therapy
,”
Biomaterials
294
,
122025
(
2023
).
3.
F.
Akkoyun
,
S.
Gucluer
, and
A.
Ozcelik
, “
Potential of the acoustic micromanipulation technologies for biomedical research
,”
Biomicrofluidics
15
,
061301
(
2021
).
4.
D.
McMahon
,
M. A.
O'Reilly
, and
K.
Hynynen
, “
Therapeutic agent delivery across the blood–brain barrier using focused ultrasound
,”
Annu. Rev. Biomed. Eng.
23
,
89
113
(
2021
).
5.
V.
Frenkel
, “
Ultrasound mediated delivery of drugs and genes to solid tumors
,”
Adv. Drug Deliv. Rev.
60
,
1193
1208
(
2008
).
6.
S.
Hernot
and
A. L.
Klibanov
, “
Microbubbles in ultrasound-triggered drug and gene delivery
,”
Adv. Drug Deliv. Rev.
60
,
1153
1166
(
2008
).
7.
C.
Newman
and
T.
Bettinger
, “
Gene therapy progress and prospects: Ultrasound for gene transfer
,”
Gene Ther.
14
,
465
475
(
2007
).
8.
S.
Mitragotri
, “
Healing sound: The use of ultrasound in drug delivery and other therapeutic applications
,”
Nat. Rev. Drug Discov.
4
,
255
260
(
2005
).
9.
S.
Roovers
,
T.
Segers
,
G.
Lajoinie
,
J.
Deprez
,
M.
Versluis
,
S. C.
De Smedt
, and
I.
Lentacker
, “
The role of ultrasound-driven microbubble dynamics in drug delivery: From microbubble fundamentals to clinical translation
,”
Langmuir
35
,
10173
10191
(
2019
).
10.
N.
Bose
,
X.
Zhang
,
T. K.
Maiti
, and
S.
Chakraborty
, “
The role of acoustofluidics in targeted drug delivery
,”
Biomicrofluidics
9
,
052609
(
2015
).
11.
P. L.
Allan
,
G. M.
Baxter
, and
M. J.
Weston
,
Clinical Ultrasound, 2-Volume Set E-Book: Expert Consult: Online and Print
(
Elsevier Health Sciences
,
2011
).
12.
A. A.
Doinikov
and
A.
Bouakaz
, “
Review of shell models for contrast agent microbubbles
,”
IEEE Trans. Ultrason. Ferroelect. Freq. Contr.
58
,
981
993
(
2011
).
13.
P.
Marmottant
,
S.
Van Der Meer
,
M.
Emmer
,
M.
Versluis
,
N.
De Jong
,
S.
Hilgenfeldt
, and
D.
Lohse
, “
A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture
,”
J. Acoust. Soc. Am.
118
,
3499
3505
(
2005
).
14.
A.
Katiyar
,
K.
Sarkar
, and
F.
Forsberg
, “
Modeling subharmonic response from contrast microbubbles as a function of ambient static pressure
,”
J. Acoust. Soc. Am.
129
,
2325
2335
(
2011
).
15.
F.
Denner
and
S.
Schenke
, “
Modeling acoustic emissions and shock formation of cavitation bubbles
,”
Phys. Fluids
35
,
012114
(
2023
).
16.
Q. N.
Nguyen
and
T.
Kanagawa
, “
Nonlinear ultrasound in liquid containing multiple coated microbubbles: Effect of buckling and rupture of viscoelastic shell on ultrasound propagation
,”
Nonlinear Dyn.
111
,
10859
10877
(
2023
).
17.
M.
Overvelde
,
V.
Garbin
,
J.
Sijl
,
B.
Dollet
,
N.
De Jong
,
D.
Lohse
, and
M.
Versluis
, “
Nonlinear shell behavior of phospholipid-coated microbubbles
,”
Ultrasound Med. Biol.
36
,
2080
2092
(
2010
).
18.
T.
Kanagawa
,
M.
Honda
, and
Y.
Kikuchi
, “
Nonlinear acoustic theory on flowing liquid containing multiple microbubbles coated by a compressible visco-elastic shell: Low and high frequency cases
,”
Phys. Fluids
35
,
023303
(
2023
).
19.
M.
Postema
and
O. H.
Gilja
, “
Contrast-enhanced and targeted ultrasound
,”
World J. Gastroenterol.
17
,
28
(
2011
).
20.
E.
Stride
,
T.
Segers
,
G.
Lajoinie
,
S.
Cherkaoui
,
T.
Bettinger
,
M.
Versluis
, and
M.
Borden
, “
Microbubble agents: New directions
,”
Ultrasound Med. Biol.
46
,
1326
1343
(
2020
).
21.
D.
Chatterjee
and
K.
Sarkar
, “
A Newtonian rheological model for the interface of microbubble contrast agents
,”
Ultrasound Med. Biol.
29
,
1749
1757
(
2003
).
22.
K.
Sarkar
,
W. T.
Shi
,
D.
Chatterjee
, and
F.
Forsberg
, “
Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation
,”
J. Acoust. Soc. Am.
118
,
539
550
(
2005
).
23.
N.
De Jong
,
L.
Hoff
,
T.
Skotland
, and
N.
Bom
, “
Absorption and scatter of encapsulated gas filled microspheres: Theoretical considerations and some measurements
,”
Ultrasonics
30
,
95
103
(
1992
).
24.
C. C.
Church
, “
The effects of an elastic solid surface layer on the radial pulsations of gas bubbles
,”
J. Acoust. Soc. Am.
97
,
1510
1521
(
1995
).
25.
A. A.
Doinikov
and
P. A.
Dayton
, “
Maxwell rheological model for lipid-shelled ultrasound microbubble contrast agents
,”
J. Acoust. Soc. Am.
121
,
3331
3340
(
2007
).
26.
J.
Jiménez-Fernández
, “
Nonlinear response to ultrasound of encapsulated microbubbles
,”
Ultrasonics
52
,
784
793
(
2012
).
27.
W.
Shao
and
W.
Chen
, “
The rupture of viscoelastic shell bubble under high intensity ultrasound drive
,”
J. Appl. Phys.
117
,
024702
(
2015
).
28.
J. H.
Song
,
A.
Moldovan
, and
P.
Prentice
, “
Non-linear acoustic emissions from therapeutically driven contrast agent microbubbles
,”
Ultrasound Med. Biol.
45
,
2188
2204
(
2019
).
29.
A.
Sojahrood
,
H.
Haghi
,
T.
Porter
,
R.
Karshafian
, and
M.
Kolios
, “
Experimental and numerical evidence of intensified non-linearity at the microscale: The lipid coated acoustic bubble
,”
Phys. Fluids
33
,
072006
(
2021
).
30.
G.
Chabouh
,
B.
Dollet
,
C.
Quilliet
, and
G.
Coupier
, “
Spherical oscillations of encapsulated microbubbles: Effect of shell compressibility and anisotropy
,”
J. Acoust. Soc. Am.
149
,
1240
1257
(
2021
).
31.
J.
Gümmer
,
S.
Schenke
, and
F.
Denner
, “
Modelling lipid-coated microbubbles in focused ultrasound applications at subresonance frequencies
,”
Ultrasound Med. Biol.
47
,
2958
2979
(
2021
).
32.
G.
Chabouh
,
B.
van Elburg
,
M.
Versluis
,
T.
Segers
,
C.
Quilliet
, and
G.
Coupier
, “
Buckling of lipidic ultrasound contrast agents under quasi-static load
,”
Philos. Trans. R. Soc. A
381
,
20220025
(
2023
).
33.
D.
Qin
,
S.
Lei
,
X.
Wang
,
X.
Zhong
,
X.
Ji
, and
Z.
Li
, “
Resonance behaviors of encapsulated microbubbles oscillating nonlinearly with ultrasonic excitation
,”
Ultrason. Sonochem.
94
,
106334
(
2023
).
34.
M.
Versluis
,
E.
Stride
,
G.
Lajoinie
,
B.
Dollet
, and
T.
Segers
, “
Ultrasound contrast agent modeling: A review
,”
Ultrasound Med. Biol.
46
,
2117
2144
(
2020
).
35.
X.
Zhang
,
F.
Li
,
C.
Wang
,
J.
Guo
,
R.
Mo
,
J.
Hu
,
S.
Chen
,
J.
He
, and
H.
Liu
, “
Radial oscillation and translational motion of a gas bubble in a micro-cavity
,”
Ultrason. Sonochem.
84
,
105957
(
2022
).
36.
O.
Vincent
,
P.
Marmottant
,
P. A.
Quinto-Su
, and
C.-D.
Ohl
, “
Birth and growth of cavitation bubbles within water under tension confined in a simple synthetic tree
,”
Phys. Rev. Lett.
108
,
184502
(
2012
).
37.
O.
Vincent
,
P.
Marmottant
,
S. R.
Gonzalez-Avila
,
K.
Ando
, and
C.-D.
Ohl
, “
The fast dynamics of cavitation bubbles within water confined in elastic solids
,”
Soft Matter
10
,
1455
1461
(
2014
).
38.
Q.
Wang
, “
Oscillation of a bubble in a liquid confined in an elastic solid
,”
Phys. Fluids
29
,
072101
(
2017
).
39.
A. A.
Doinikov
,
B.
Dollet
, and
P.
Marmottant
, “
Model for the growth and the oscillation of a cavitation bubble in a spherical liquid-filled cavity enclosed in an elastic medium
,”
Phys. Rev. E
97
,
013108
(
2018
).
40.
A. A.
Doinikov
and
P.
Marmottant
, “
Natural oscillations of a gas bubble in a liquid-filled cavity located in a viscoelastic medium
,”
J. Sound Vib.
420
,
61
72
(
2018
).
41.
A. A.
Doinikov
,
B.
Dollet
, and
P.
Marmottant
, “
Cavitation in a liquid-filled cavity surrounded by an elastic medium: Intercoupling of cavitation events in neighboring cavities
,”
Phys. Rev. E
98
,
013108
(
2018
).
42.
A. A.
Doinikov
,
D.
Bienaimé
,
S. R.
Gonzalez-Avila
,
C.-D.
Ohl
, and
P.
Marmottant
, “
Nonlinear dynamics of two coupled bubbles oscillating inside a liquid-filled cavity surrounded by an elastic medium
,”
Phys. Rev. E
99
,
053106
(
2019
).
43.
K.
Leonov
and
I.
Akhatov
, “
Towards a theory of dynamics of a single cavitation bubble in a rigid micro-confinement
,”
Int. J. Multiph. Flow
130
,
103369
(
2020
).
44.
L.
Fu
,
X.-X.
Liang
,
S.
Wang
,
S.
Wang
,
P.
Wang
,
Z.
Zhang
,
J.
Wang
,
A.
Vogel
, and
C.
Yao
, “
Laser induced spherical bubble dynamics in partially confined geometry with acoustic feedback from container walls
,”
Ultrason. Sonochem.
101
,
106664
(
2023
).
45.
H.
Oguz
and
A.
Prosperetti
, “
The natural frequency of oscillation of gas bubbles in tubes
,”
J. Acoust. Soc. Am.
103
,
3301
3308
(
1998
).
46.
S.
Qin
and
K. W.
Ferrara
, “
The natural frequency of nonlinear oscillation of ultrasound contrast agents in microvessels
,”
Ultrasound Med. Biol.
33
,
1140
1148
(
2007
).
47.
F.
Gao
,
Y.
Hu
, and
H.
Hu
, “
Asymmetrical oscillation of a bubble confined inside a micro pseudoelastic blood vessel and the corresponding vessel wall stresses
,”
Int. J. Solids Struct.
44
,
7197
7212
(
2007
).
48.
S.
Martynov
,
E.
Stride
, and
N.
Saffari
, “
The natural frequencies of microbubble oscillation in elastic vessels
,”
J. Acoust. Soc. Am.
126
,
2963
2972
(
2009
).
49.
O.
Vincent
and
P.
Marmottant
, “
On the statics and dynamics of fully confined bubbles
,”
J. Fluid Mech.
827
,
194
224
(
2017
).
50.
Z.
Heidary
,
C.-D.
Ohl
, and
A.
Mojra
, “
Numerical analysis of ultrasound-mediated microbubble interactions in vascular systems: Effects on shear stress and vessel mechanics
,”
Phys. Fluids
36
,
081903
(
2024
).
51.
B.
Dollet
,
P.
Marmottant
, and
V.
Garbin
, “
Bubble dynamics in soft and biological matter
,”
Annu. Rev. Fluid Mech.
51
,
331
355
(
2019
).
52.
R.
Kawahata
,
T.
Kanagawa
, and
G.
Chabouh
, “
Nonlinear ultrasound propagation in liquid containing multiple microbubbles coated by shell incorporating anisotropy
,”
Phys. Fluids
35
,
073312
(
2023
).
53.
A. K.
Abu-Nab
and
A. F.
Abu-Bakr
, “
On the theory of multiple encapsulated microbubbles interaction: Effect of lipid shell thickness
,”
Case Stud. Therm. Eng.
45
,
102901
(
2023
).
54.
H.
Yusefi
and
B.
Helfield
, “
Subharmonic resonance of phospholipid coated ultrasound contrast agent microbubbles
,”
Ultrason. Sonochem.
102
,
106753
(
2024
).
55.
N.
De Jong
,
A.
Bouakaz
, and
P.
Frinking
, “
Basic acoustic properties of microbubbles
,”
J. Echocardiogr.
19
,
229
240
(
2002
).
56.
A. F.
Abu-Bakr
and
A. K.
Abu-Nab
, “
Growth of lipid-coated multi-microbubbles in viscoelastic tissues
,”
Eur. Phys. J. Plus
137
,
513
(
2022
).
57.
J.
Ji
,
S.
Li
,
P.
Wan
, and
Z.
Liu
, “
Numerical simulation of the behaviors of single bubble in shear-thinning viscoelastic fluids
,”
Phys. Fluids
35
,
013313
(
2023
).
58.
H.
Liu
,
L.
Lan
,
J.
Abrigo
,
H. L.
Ip
,
Y.
Soo
,
D.
Zheng
,
K. S.
Wong
,
D.
Wang
,
L.
Shi
,
T. W.
Leung
et al, “
Comparison of Newtonian and non-Newtonian fluid models in blood flow simulation in patients with intracranial arterial stenosis
,”
Front. Physiol.
12
,
718540
(
2021
).
59.
M.
Samaee
,
A.
Nooraeen
,
M.
Tafazzoli-Shadpour
, and
H.
Taghizadeh
, “
A comparison of Newtonian and non-Newtonian pulsatile blood rheology in carotid bifurcation through fluid–solid interaction hemodynamic assessment based on experimental data
,”
Phys. Fluids
34
,
071902
(
2022
).
60.
W.-J.
Yang
and
H.-C.
Yeh
, “
Theoretical study of bubble dynamics in purely viscous fluids
,”
AIChE J.
12
,
927
931
(
1966
).
61.
A.
Shima
and
T.
Tsujino
, “
The behaviour of bubbles in polymer solutions
,”
Chem. Eng. Sci.
31
,
863
869
(
1976
).
62.
A.
Arefmanesh
,
M. M.
Arani
, and
A. A. A.
Arani
, “
Dynamics of a bubble in a power-law fluid confined within an elastic solid
,”
Eur. J. Mech. B/Fluids
94
,
29
36
(
2022
).
63.
S. I.
Kaykanat
and
K.
Uguz
, “
Shape stability of a microbubble in a power–law liquid
,”
Eur. Phys. J. Spec. Top.
233
,
1625
(
2024
).
64.
J. C.
Weddell
,
J.
Kwack
,
P.
Imoukhuede
, and
A.
Masud
, “
Hemodynamic analysis in an idealized artery tree: Differences in wall shear stress between Newtonian and non-Newtonian blood models
,”
PLoS One
10
,
e0124575
(
2015
).
65.
S.
Lynch
,
N.
Nama
, and
C. A.
Figueroa
, “
Effects of non-Newtonian viscosity on arterial and venous flow and transport
,”
Sci. Rep.
12
,
20568
(
2022
).
66.
E.
Hersey
,
M.
Rodriguez
, and
E.
Johnsen
, “
Dynamics of an oscillating microbubble in a blood-like Carreau fluid
,”
J. Acoust. Soc. Am.
153
,
1836
1845
(
2023
).
67.
T.
Faez
,
M.
Emmer
,
K.
Kooiman
,
M.
Versluis
,
A.
van der Steen
, and
N.
de Jong
, “
20 years of ultrasound contrast agent modeling
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
60
,
7
20
(
2012
).
68.
M.
Mooney
, “
A theory of large elastic deformation
,”
J. Appl. Phys.
11
,
582
592
(
1940
).
69.
A. G.
Holzapfel
,
Nonlinear Solid Mechanics II
(
Springer Dordrecht
,
2000
).
70.
K.
Murakami
,
R.
Gaudron
, and
E.
Johnsen
, “
Shape stability of a gas bubble in a soft solid
,”
J. Acoust. Soc. Am.
67
,
105170
(
2020
).
71.
R.
Gaudron
,
M.
Warnez
, and
E.
Johnsen
, “
Bubble dynamics in a viscoelastic medium with nonlinear elasticity
,”
J. Fluid Mech.
766
,
54
75
(
2015
).
72.
L. D.
Landau
,
E. M.
Lifshitz
,
A. M.
Kosevich
, and
L. P.
Pitaevskii
,
Theory of Elasticity
(
Elsevier
,
1986
), Vol. 7.
73.
H. P.
Langtangen
and
G. K.
Pedersen
,
Scaling of Differential Equations
(
Springer Nature
,
2016
).
74.
K.
Leonov
and
I.
Akhatov
, “
Dynamics of an externally driven cavitation bubble in an elastic microconfinement
,”
Phys. Rev. E
104
,
015105
(
2021
).
75.
Y.
Liu
,
Q.
Wang
, and
A.
Zhang
, “
Surface stability of a bubble in a liquid fully confined by an elastic solid
,”
Phys. Fluids
30
,
127106
(
2018
).
76.
M.
Minnaert
, “
XVI. On musical air-bubbles and the sounds of running water
,”
London Edinburgh Philos. Mag. J. Sci.
16
,
235
248
(
1933
).
77.
S.
Sirsi
and
M.
Borden
, “
Microbubble compositions, properties and biomedical applications
,”
Bubble Sci. Eng. Technol.
1
,
3
17
(
2009
).
78.
R. S.
Meltzer
, “
Food and drug administration ultrasound device regulation: The output display standard, the “mechanical index,” and ultrasound safety
,”
J. Am. Soc. Echocardiogr.
9
,
216
220
(
1996
).
79.
G. A.
Holzapfel
,
T. C.
Gasser
, and
R. W.
Ogden
, “
A new constitutive framework for arterial wall mechanics and a comparative study of material models
,”
J. Elast.
61
,
1
48
(
2000
).
80.
X.
Yang
and
C. C.
Church
, “
A model for the dynamics of gas bubbles in soft tissue
,”
J. Acoust. Soc. Am.
118
,
3595
3606
(
2005
).
81.
C.-D.
Ohl
and
B.
Wolfrum
, “
Detachment and sonoporation of adherent hela-cells by shock wave-induced cavitation
,”
Biochim. Biophys. Acta
1624
,
131
138
(
2003
).
82.
Y.
Xie
,
J.
Hu
,
W.
Lei
, and
S.
Qian
, “
Prediction of vascular injury by cavitation microbubbles in a focused ultrasound field
,”
Ultrason. Sonochem.
88
,
106103
(
2022
).
You do not currently have access to this content.