The paper explores the application of MATLAB simulations to model fluid dynamics in blood circulation and vascular flow, focusing on analyzing velocity distribution and pressure gradients and the impact of vessel geometry. By employing computational fluid dynamics principles, the research develops and solves mathematical models based on Navier–Stokes equations to simulate blood flow within vascular structures. A key focus is placed on analyzing the role of critical parameters, such as viscosity, pressure gradients, and vascular geometry, in flow patterns and velocity distributions. Various scenarios, including laminar and turbulent flow regimes, are examined using Reynolds number calculations to delineate flow behavior under physiological and pathological conditions. The study incorporates two-dimensional (2D) and three-dimensional (3D) visualizations to represent velocity profiles, pressure distributions, and the impact of wall shear stress on vessel dynamics. Results demonstrate a parabolic velocity profile in laminar flow and significant deviations under altered conditions, such as increased viscosity or narrowing vessel diameters. The findings underscore the importance of precise modeling for understanding circulatory behavior and its implications in diagnosing vascular disorders. This work offers an effective framework for simulating hemodynamics, with potential applications in medical research and the design of therapeutic interventions.

The editor of the article agrees to the retraction of the article effective 10 April 2025.

1.
C. A.
Taylor
and
C. A.
Figueroa
, “
Patient-specific modeling of cardiovascular mechanics
,”
Annu. Rev. Biomed. Eng.
11
,
109
134
(
2009
).
2.
O. K.
Baskurt
and
H. J.
Meiselman
, “
Blood rheology and hemodynamics
,”
Semin. Thromb. Hemost.
29
(
5
),
435
450
(
2003
).
3.
K. K.
Yeleswarapu
et al, “
Non-Newtonian constitutive models for human blood
,”
J. Biomech. Eng.
118
(
4
),
133
139
(
1996
).
4.
D. N.
Ku
, “
Blood flow in arteries
,”
Annu. Rev. Fluid Mech.
29
(
1
),
399
434
(
1997
).
5.
D.
Gallo
et al, “
Hemodynamics of stenotic arteries: Modeling pressure and velocity profiles
,”
J. Biomech.
94
,
44
52
(
2019
).
6.
D. A.
Steinman
et al, “
Predicting aneurysm growth with CFD: A hemodynamic perspective
,”
Stroke
34
(
2
),
295
302
(
2003
).
7.
A. M.
Malek
et al, “
Hemodynamic shear stress and its role in atherosclerosis
,”
JAMA
282
(
21
),
2035
2042
(
1999
).
8.
J. D.
Humphrey
and
G. A.
Holzapfel
, “
Mechanics, mechanobiology, and modeling of human arteries
,”
J. Biomech.
45
(
5
),
630
641
(
2012
).
9.
K.
Patel
and
P.
Vaidya
, “
Numerical modeling of solar dryer systems for agricultural products using MATLAB
,”
Int. J. Eng. Technol.
109
,
107
121
(
2023
).
10.
P.
Ghosal
and
S.
Bhattacharya
, “
Simulation of Heat transfer and drying kinetics in solar drying systems using MATLAB
,”
J. Renewable Energy
44
,
128
144
(
2022
).
11.
A.
Jones
and
M.
Kumar
, “
Optimization of solar dryer performance with MATLAB: Application to food and industrial sludge drying
,”
Renewable Energy
153
,
1270
1285
(
2021
).
12.
Y.
Liu
and
X.
Zhang
, “
Modeling and simulation of solar drying in industrial applications using MATLAB: A review
,”
Energy Procedia
172
,
116
124
(
2023
).
13.
T.
Smith
and
D.
Martin
, “
Fluid-structure interaction modeling of blood vessels using MATLAB
,”
Biomech. Model. Mechanobiol.
11
,
221
234
(
2023
).
14.
L.
Chen
and
J.
Wu
, “
Non-Newtonian Modeling of Microcirculatory Blood Flow Using MATLAB
,”
J. Comput. Fluid Dyn.
37
,
709
720
(
2022
).
15.
R.
Gupta
and
K.
Singh
, “
Numerical analysis of turbulent flow in bifurcating arteries
,”
Int. J. Biomed. Eng.
124
,
9
20
(
2021
).
16.
X.
Huang
and
Z.
Li
, “
Thermo-fluid simulation of coronary bypass grafts
,”
J. Medical Eng. Technol.
12
,
419
424
(
2023
).
17.
W.
Zhou
and
H.
Choi
, “
Particle transport in blood plasma: A MATLAB simulation approach
,”
Adv. Biomed. Simul.
83
,
39
46
(
2023
).
18.
F. M.
White
,
Viscous Fluid Flow
, 3rd ed. (
McGraw-Hill Education
,
2006
).
19.
Y. C.
Fung
,
Biomechanics: Circulation
(
Springer Science & Business Media
,
1997
).
20.
C. G.
Caro
,
T. J.
Pedley
,
R. C.
Schroter
, and
W. A.
Seed
,
The Mechanics of the Circulation
(
Cambridge University Press
,
2012
).
21.
D. A.
Nordsletten
and
S. J.
Sherwin
, “
A study of the flow regimes in large arteries
,”
J. Biomech.
39
(
12
),
2317
2324
(
2006
).
22.
W. R.
Milnor
,
Hemodynamics
, 2nd ed.
Saunders Elsevier
(
1989
).
23.
W. H.
Young
and
L.
Jovanovic
, “
The effect of viscosity and blood flow on arterial pressure distribution
,”
J. Fluid Mech.
873
,
124
137
(
2019
).
24.
J.
Liu
and
Y.
Xie
, “
Numerical simulation of blood flow in arteries with different geometries
,”
J. Biomech.
48
(
8
),
1678
1685
(
2015
).
25.
P.
Ghosal
and
S.
Bhattacharya
, “
Simulation of heat transfer and blood flow in vascular systems
,”
J. Biomech. Eng.
144
(
6
),
61010
(
2022
).
26.
Y.
Zhou
,
J.
Wu
, and
Z.
Zhang
, “
Numerical simulation of blood flow in arteries: analysis of laminar and turbulent flow
,”
J. Biomech.
51
(
1
),
90
100
(
2018
).
27.
C.
Cheng
et al, “
Reynolds number and shear stress levels in the human aorta
,”
J. Biomech.
42
(
10
),
1362
1372
(
2009
).
28.
S. A.
Berger
and
L. D.
Jou
, “
Flows in stenotic vessels
,”
Annu. Rev. Fluid Mech.
32
(
1
),
347
382
(
2000
).
29.
Q.
Long
et al, “
Numerical simulation of blood flow in arterial stenosis
,”
J. Biomech.
34
(
10
),
1225
1236
(
2001
).
30.
D. A.
Steinman
and
C. A.
Taylor
, “
Flow imaging and computing: Large artery hemodynamics
,”
Ann. Biomed. Eng.
33
(
12
),
1704
1709
(
2005
).
You do not currently have access to this content.