Currently, it is challenging to investigate aneurismal hemodynamics based on current in vivo data such as Magnetic Resonance Imaging or Computed Tomography due to the limitations in both spatial and temporal resolutions. In this work, we investigate the use of modal analysis at various resolutions to examine its usefulness for analyzing blood flows in brain aneurysms. Two variants of Dynamic Mode Decomposition (DMD): (i) Hankel-DMD; and (ii) Optimized-DMD, are used to extract the time-dependent dynamics of blood flows during one cardiac cycle. First, high-resolution hemodynamic data in patient-specific aneurysms are obtained using Computational Fluid Dynamics. Second, the dynamics modes, along with their spatial amplitudes and temporal magnitudes are calculated using the DMD analysis. Third, an examination of DMD analyses using a range of spatial and temporal resolutions of hemodynamic data to validate the applicability of DMD for low-resolution data, similar to ones in clinical practices. Our results show that DMD is able to characterize the inflow jet dynamics by separating large-scale structures and flow instabilities even at low spatial and temporal resolutions. Its robustness in quantifying the flow dynamics using the energy spectrum is demonstrated across different resolutions in all aneurysms in our study population. Our work indicates that DMD can be used for analyzing blood flow patterns of brain aneurysms and is a promising tool to be explored in in vivo.

1.
S.
Gholampour
and
S.
Mehrjoo
, “
Effect of bifurcation in the hemodynamic changes and rupture risk of small intracranial aneurysm
,”
Neurosurg. Rev.
44
,
1703
1712
(
2021
).
2.
O.
Rousseau
,
M.
Karakachoff
,
A.
Gaignard
,
L.
Bellanger
,
P.
Bijlenga
,
P. C. D.
Beaufils
,
V.
L'Allinec
,
O.
Levrier
,
P.
Aguettaz
,
J.-P.
Desilles
et al, “
Location of intracranial aneurysms is the main factor associated with rupture in the ICAN population
,”
J. Neurol. Neurosurg. Psychiatry
92
,
122
128
(
2021
).
3.
G.
Toth
and
R.
Cerejo
, “
Intracranial aneurysms: Review of current science and management
,”
Vasc. Med.
23
,
276
288
(
2018
).
4.
D. C.
Lauzier
,
K.
Jayaraman
,
J. Y.
Yuan
,
D.
Diwan
,
A. K.
Vellimana
,
J. W.
Osbun
,
A. R.
Chatterjee
,
U.
Athiraman
,
R.
Dhar
, and
G. J.
Zipfel
, “
Early brain injury after subarachnoid hemorrhage: Incidence and mechanisms
,”
Stroke
54
,
1426
1440
(
2023
).
5.
B. L.
Hoh
,
N. U.
Ko
,
S.
Amin-Hanjani
,
S. H.-Y.
Chou
,
S.
Cruz-Flores
,
N. S.
Dangayach
,
C. P.
Derdeyn
,
R.
Du
,
D.
Hänggi
,
S. W.
Hetts
et al, “
2023 guideline for the management of patients with aneurysmal subarachnoid hemorrhage: A guideline from the American Heart Association/American Stroke Association
,”
Stroke
54
,
e314
e370
(
2023
).
6.
B. G.
Thompson
,
R. D.
Brown
,
S.
Amin-Hanjani
,
J. P.
Broderick
, and
K. M.
Cockroft
, “
Guidelines for the management of patients with unruptured intracranial aneurysms: A guideline for healthcare professionals from the American Heart Association/American Stroke Association
,”
Stroke
46
,
2368
(
2015
).
7.
M.
Khan
,
V.
Toro Arana
,
M.
Najafi
,
D.
MacDonald
,
T.
Natarajan
,
K.
Valen-Sendstad
, and
D.
Steinman
, “
On the prevalence of flow instabilities from high-fidelity computational fluid dynamics of intracranial bifurcation aneurysms
,”
J. Biomech.
127
,
110683
(
2021
).
8.
Mayo Clinic
,
Brain Aneurysm - Symptoms and Causes
(
Mayo Clinic
,
2022
).
9.
R. G.
Tawk
,
T. F.
Hasan
,
C. E.
D'Souza
,
J. B.
Peel
, and
W. D.
Freeman
, “
Diagnosis and treatment of unruptured intracranial aneurysms and aneurysmal subarachnoid hemorrhage
,” in
Mayo Clinic Proceedings
(
Elsevier
,
2021
), Vol.
96
, pp.
1970
2000
.
10.
L.
Feng
,
H.-J.
Mao
,
D.-D.
Zhang
,
Y.-C.
Zhu
, and
F.
Han
, “
Anatomical variations in the Circle of Willis and the formation and rupture of intracranial aneurysms: A systematic review and meta-analysis
,”
Front. Neurol.
13
,
1098950
(
2023
).
11.
V. L.
Rayz
and
A. A.
Cohen-Gadol
, “
Hemodynamics of cerebral aneurysms: Connecting medical imaging and biomechanical analysis
,”
Annu. Rev. Biomed. Eng.
22
,
231
256
(
2020
).
12.
O.
Alwalid
,
X.
Long
,
M.
Xie
, and
P.
Han
, “
Artificial intelligence applications in intracranial aneurysm: Achievements, challenges and opportunities
,”
Acad. Radiol.
29
,
S201
S214
(
2022
).
13.
X.
Tang
,
L.
Zhou
,
L.
Wen
,
Q.
Wu
,
X.
Leng
,
J.
Xiang
, and
X.
Zhang
, “
Morphological and hemodynamic characteristics associated with the rupture of multiple intracranial aneurysms
,”
Front. Neurol.
12
,
811281
(
2022
).
14.
C. A.
Hilditch
,
W.
Brinjikji
,
A.
Tsang
,
P.
Nicholson
,
A.
Kostynskyy
,
M.
Tymianski
,
T.
Krings
,
I.
Radovanovic
, and
V.
Pereira
, “
Application of PHASES and ELAPSS scores to ruptured cerebral aneurysms: How many would have been conservatively managed?
J. Neurosurg. Sci.
65
,
33
37
(
2021
).
15.
A.
Zingaro
,
Z.
Ahmad
,
E.
Kholmovski
,
K.
Sakata
,
L.
Dede'
,
A. K.
Morris
,
A.
Quarteroni
, and
N. A.
Trayanova
, “
A comprehensive stroke risk assessment by combining atrial computational fluid dynamics simulations and functional patient data
,”
Sci. Rep.
14
,
9515
(
2024
).
16.
M. A. A.
Sheikh
,
A. S.
Shuib
, and
M. H. H.
Mohyi
, “
A review of hemodynamic parameters in cerebral aneurysm
,”
Interdiscip. Neurosurg.
22
,
100716
(
2020
).
17.
R. D.
Brown
and
J. P.
Broderick
, “
Unruptured intracranial aneurysms: Epidemiology, natural history, management options, and familial screening
,”
Lancet Neurol.
13
,
393
404
(
2014
).
18.
D. M.
Sforza
,
C. M.
Putman
, and
J. R.
Cebral
, “
Hemodynamics of cerebral aneurysms
,”
Annu. Rev. Fluid Mech.
41
,
91
107
(
2009
).
19.
S.
Schnell
,
S. A.
Ansari
,
P.
Vakil
,
M.
Wasielewski
,
M. L.
Carr
,
M. C.
Hurley
,
B. R.
Bendok
,
H.
Batjer
,
T. J.
Carroll
,
J.
Carr
et al, “
Three-dimensional hemodynamics in intracranial aneurysms: Influence of size and morphology
,”
J. Magn. Reson. Imaging
39
,
120
131
(
2014
).
20.
S.
Schnell
,
C.
Wu
, and
S. A.
Ansari
, “
4D MRI flow examinations in cerebral and extracerebral vessels. Ready for clinical routine?
Curr. Opin. Neurol.
29
,
419
(
2016
).
21.
R.
Dholakia
,
C.
Sadasivan
,
D. J.
Fiorella
,
H. H.
Woo
, and
B. B.
Lieber
, “
Hemodynamics of flow diverters
,”
J. Biomech. Eng.
139
,
021002
(
2017
).
22.
J.
Xiang
,
V.
Tutino
,
K.
Snyder
, and
H.
Meng
, “
CFD: Computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment
,”
AJNR. Am. J. Neuroradiol.
35
,
1849
1857
(
2014
).
23.
X.
Wu
,
S.
Gürzing
,
C.
Schinkel
,
M.
Toussaint
,
R.
Perinajová
,
P.
van Ooij
, and
S.
Kenjereá
, “
Hemodynamic study of a patient-specific intracranial aneurysm: Comparative assessment of tomographic PIV, stereoscopic PIV, in vivo MRI and computational fluid dynamics
,”
Cardiovasc. Eng. Technol.
13
,
428
(
2022
).
24.
T. B.
Le
,
I.
Borazjani
, and
F.
Sotiropoulos
, “
Pulsatile flow effects on the hemodynamics of intracranial aneurysms
,”
J. Biomech. Eng.
132
,
111009
(
2010
).
25.
K.
Futami
,
T.
Uno
,
K.
Misaki
,
S.
Tamai
,
I.
Nambu
,
N.
Uchiyama
, and
M.
Nakada
, “
Identification of vortex cores in cerebral aneurysms on 4D flow MRI
,”
AJNR. Am. J. Neuroradiol.
40
(
12
),
2111
2116
(
2019
).
26.
D. E.
MacDonald
,
M.
Najafi
,
L.
Temor
, and
D. A.
Steinman
, “
Spectral bandedness in high-fidelity computational fluid dynamics predicts rupture status in intracranial aneurysms
,”
J. Biomech. Eng.
144
,
061004
(
2022
).
27.
M.
Habibi
,
R. M.
D'Souza
,
S. T.
Dawson
, and
A.
Arzani
, “
Integrating multi-fidelity blood flow data with reduced-order data assimilation
,”
Comput. Biol. Med.
135
,
104566
(
2021
).
28.
A.
Arzani
and
S. T. M.
Dawson
, “
Data-driven cardiovascular flow modelling: Examples and opportunities
,”
J. R Soc. Interface
18
,
20200802
(
2021
).
29.
A.
Arzani
,
J.-X.
Wang
,
M. S.
Sacks
, and
S. C.
Shadden
, “
Machine learning for cardiovascular biomechanics modeling: Challenges and beyond
,”
Ann. Biomed. Eng.
50
,
615
627
(
2022
).
30.
K.
Taira
,
S. L.
Brunton
,
S. T.
Dawson
,
C. W.
Rowley
,
T.
Colonius
,
B. J.
McKeon
,
O. T.
Schmidt
,
S.
Gordeyev
,
V.
Theofilis
, and
L. S.
Ukeiley
, “
Modal analysis of fluid flows: An overview
,”
AIAA J.
55
,
4013
4041
(
2017
).
31.
T. B.
Le
, “
Dynamic modes of inflow jet in brain aneurysms
,”
J. Biomech.
116
,
110238
(
2021
).
32.
P.
Yu
and
V.
Durgesh
, “
Application of dynamic mode decomposition to study temporal flow behavior in a saccular aneurysm
,”
J. Biomech. Eng.
144
,
051002
(
2022
).
33.
G.
Di Labbio
and
L.
Kadem
, “
Reduced-order modeling of left ventricular flow subject to aortic valve regurgitation
,”
Phys. Fluids
31
,
031901
(
2019
).
34.
M.
Habibi
,
S. T. M.
Dawson
, and
A.
Arzani
, “
Data-driven pulsatile blood flow physics with dynamic mode decomposition
,”
Fluids
5
,
111
(
2020
).
35.
H.
Csala
,
S.
Dawson
, and
A.
Arzani
, “
Comparing different nonlinear dimensionality reduction techniques for data-driven unsteady fluid flow modeling
,”
Phys. Fluids
34
,
117119
(
2022
).
36.
M.
Kamb
,
E.
Kaiser
,
S. L.
Brunton
, and
J. N.
Kutz
, “
Time-delay observables for Koopman: Theory and applications
,”
SIAM J. Appl. Dyn. Syst.
19
,
886
917
(
2020
).
37.
S.
Pan
and
K.
Duraisamy
, “
On the structure of time-delay embedding in linear models of non-linear dynamical systems
,”
Chaos
30
,
073135
(
2020
).
38.
F.
Takens
, “
Detecting strange attractors in turbulence
,” in
Dynamical Systems and Turbulence, Warwick 1980
, Lecture Notes in Mathematics, edited by
D.
Rand
and
L.-S.
Young
(
Springer
,
Berlin
,
1981
), Vol.
898
, Chap. 21, pp.
366
381
.
39.
T.
Askham
and
J. N.
Kutz
, “
Variable projection methods for an optimized dynamic mode decomposition
,”
SIAM J. Appl. Dyn. Syst.
17
,
380
416
(
2018
).
40.
J.
Frösen
,
R.
Tulamo
,
A.
Paetau
,
E.
Laaksamo
,
M.
Korja
,
A.
Laakso
,
M.
Niemelä
, and
J.
Hernesniemi
, “
Saccular intracranial aneurysm: Pathology and mechanisms
,”
Acta Neuropathol.
123
,
773
786
(
2012
).
41.
Aneurisk-Team
, see http://ecm2.mathcs.emory.edu/aneuriskweb for “
Department of Mathematics, Emory University, Aneurisk Web Project Website
” (
2012
).
42.
A.
Bouthillier
,
H. R.
van Loveren
, and
J. T.
Keller
, “
Segments of the internal carotid artery: A new classification
,”
Neurosurgery
38
,
425
433
(
1996
).
43.
A.
Fedorov
,
R.
Beichel
,
J.
Kalpathy-Cramer
,
J.
Finet
,
J.-C.
Fillion-Robin
,
S.
Pujol
,
C.
Bauer
,
D.
Jennings
,
F.
Fennessy
,
M.
Sonka
,
J.
Buatti
,
S.
Aylward
,
J. V.
Miller
,
S.
Pieper
, and
R.
Kikinis
, “
3D slicer as an image computing platform for the quantitative imaging network
,”
Magn. Reson. Imaging
30
,
1323
1341
(
2012
).
44.
M.
Neugebauer
,
G.
Janiga
,
O.
Beuing
,
M.
Skalej
, and
B.
Preim
, “
Anatomy-guided multi-level exploration of blood flow in cerebral aneurysms
,”
Comput. Graph. Forum
30
,
1041
1050
(
2011
).
45.
M. I.
Baharoglu
,
A.
Lauric
,
M. G.
Safain
,
J.
Hippelheuser
,
C.
Wu
, and
A. M.
Malek
, “
Widening and high inclination of the middle cerebral artery bifurcation are associated with presence of aneurysms
,”
Stroke
45
,
2649
2655
(
2014
).
46.
R. R.
Sokal
and
C. D.
Michener
, “
A statistical method for evaluating systematic relationships
,”
Univ. Kans. Sci. Bull.
38
,
1409
1438
(
1958
).
47.
F.
Tajima
, “
A simple graphic method for reconstructing phylogenetic trees from molecular data
,”
Mol. Biol. Evol.
7
,
578
588
(
1990
).
48.
M.
Piccinelli
,
S.
Bacigaluppi
,
E.
Boccardi
,
B.
Ene-Iordache
,
A.
Remuzzi
,
A.
Veneziani
, and
L.
Antiga
, “
Geometry of the internal carotid artery and recurrent patterns in location, orientation, and rupture status of lateral aneurysms: An image-based computational study
,”
Neurosurgery
68
,
1270
1285
(
2011
).
49.
J. P.
Steinbrenner
,
J.
Chawner
, and
C.
Fouts
,
The Gridgen 3D Multiple Block Grid Generation System. User's Manual
(Wright Research and Development Center, Wright-Patterson AFB, OH,
1991
), Vol.
2
.
50.
A.
Gilmanov
,
T. B.
Le
, and
F.
Sotiropoulos
, “
A numerical approach for simulating fluid structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains
,”
J. Comput. Phys.
300
,
814
843
(
2015
).
51.
N.
Bessonov
,
A.
Sequeira
,
S.
Simakov
,
Y.
Vassilevskii
, and
V.
Volpert
, “
Methods of blood flow modelling
,”
Math. Model. Nat. Phenom.
11
,
1
25
(
2016
).
52.
J.
Kim
and
P.
Moin
, “
Application of a fractional-step method to incompressible Navier-Stokes equations
,”
J. Comput. Phys.
59
,
308
323
(
1985
).
53.
I.
Borazjani
,
L.
Ge
, and
F.
Sotiropoulos
, “
Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies
,”
J. Comput. Phys.
227
,
7587
7620
(
2008
).
54.
T. B.
Le
,
D. R.
Troolin
,
D.
Amatya
,
E. K.
Longmire
, and
F.
Sotiropoulos
, “
Vortex phenomena in sidewall aneurysm hemodynamics: Experiment and numerical simulation
,”
Ann. Biomed. Eng.
41
,
2157
2170
(
2013
).
55.
T. B.
Le
,
M. S.
Elbaz
,
R. J.
Van Der Geest
, and
F.
Sotiropoulos
, “
High resolution simulation of diastolic left ventricular hemodynamics guided by four-dimensional flow magnetic resonance imaging data
,”
Flow. Turbul. Combust.
102
,
3
26
(
2019
).
56.
T. B.
Le
and
F.
Sotiropoulos
, “
Fluid–structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle
,”
J. Comput. Phys.
244
,
41
62
(
2013
).
57.
J. R.
Cebral
,
M. A.
Castro
,
J. E.
Burgess
,
R. S.
Pergolizzi
,
M. J.
Sheridan
, and
C. M.
Putman
, “
Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models
,”
AJNR. Am. J. Neuroradiol.
26
(
10
),
2550
2559
(
2005
).
58.
K. K.
Chen
,
J. H.
Tu
, and
C. W.
Rowley
, “
Variants of dynamic mode decomposition: Boundary condition, Koopman, and Fourier analyses
,”
J. Nonlinear Sci.
22
,
887
915
(
2012
).
59.
C. W.
Rowley
,
I.
Mezić
,
S.
Bagheri
,
P.
Schlatter
, and
D. S.
Henningson
, “
Spectral analysis of nonlinear flows
,”
J. Fluid Mech.
641
,
115
127
(
2009
).
60.
P. J.
Schmid
, “
Dynamic mode decomposition and its variants
,”
Annu. Rev. Fluid Mech.
54
,
225
254
(
2022
).
61.
G.
Nedzhibov
, “
On alternative algorithms for computing dynamic mode decomposition
,”
Computation
10
,
210
(
2022
).
62.
J. H.
Tu
,
C. W.
Rowley
,
D. M.
Luchtenburg
,
S. L.
Brunton
, and
J. N.
Kutz
, “
On dynamic mode decomposition: Theory and applications
,”
J. Comput. Dyn.
1
,
391
421
(
2014
).
63.
M. R.
Jovanović
,
P. J.
Schmid
, and
J. W.
Nichols
, “
Sparsity-promoting dynamic mode decomposition
,”
Phys. Fluids
26
,
024103
(
2014
).
64.
S.
Dhar
,
M.
Tremmel
,
J.
Mocco
,
M.
Kim
,
J.
Yamamoto
,
A. H.
Siddiqui
,
L. N.
Hopkins
, and
H.
Meng
, “
Morphology parameters for intracranial aneurysm rupture risk assessment
,”
Neurosurgery
63
,
185
197
(
2008
).
65.
H.
Ujiie
,
Y.
Tamano
,
K.
Sasaki
, and
T.
Hori
, “
Is the aspect ratio a reliable index for predicting the rupture of a saccular aneurysm?
Neurosurgery
48
,
495
503
(
2001
).
66.
W.
Brinjikji
,
V. M.
Pereira
,
R.
Khumtong
,
A.
Kostensky
,
M.
Tymianski
,
T.
Krings
, and
I.
Radovanovich
, “
PHASES and ELAPSS scores are associated with aneurysm growth: A study of 431 unruptured intracranial aneurysms
,”
World Neurosurg.
114
,
e425
e432
(
2018
).
67.
A.
Nader-Sepahi
,
M.
Casimiro
,
J.
Sen
, and
N. D.
Kitchen
, “
Is aspect ratio a reliable predictor of intracranial aneurysm rupture?
Neurosurgery
54
,
1343
1348
(
2004
).
68.
Y.
Zhang
,
B.
Eichholz
, and
R.
Zhang
, “
Evolution of vortex structures in an open deep cavity under pulsatile flow conditions: An experimental study
,”
Phys. Fluids
34
,
091902
(
2022
).
69.
H.
Asgharzadeh
,
A.
Shahmohammadi
,
N.
Varble
,
E. I.
Levy
,
H.
Meng
, and
I.
Borazjani
, “
A simple flow classification parameter can discriminate rupture status in intracranial aneurysms
,”
Neurosurgery
87
,
E557
(
2020
).
70.
R.
Yang
,
Y.
Ren
,
H. K.
Kok
,
P. D.
Smith
,
P. M.
Kebria
,
A.
Khosravi
,
J.
Maingard
,
M.
Yeo
,
J.
Hall
,
M.
Foo
et al, “
Verification of a simplified aneurysm dimensionless flow parameter to predict intracranial aneurysm rupture status
,”
Br. J. Radiol.
97
,
tqae106
(
2024
).
71.
H.
Isoda
,
Y.
Ohkura
,
T.
Kosugi
,
M.
Hirano
,
H.
Takeda
,
H.
Hiramatsu
,
S.
Yamashita
,
Y.
Takehara
,
M. T.
Alley
,
R.
Bammer
et al, “
In vivo hemodynamic analysis of intracranial aneurysms obtained by magnetic resonance fluid dynamics (MRFD) based on time-resolved three-dimensional phase-contrast MRI
,”
Neuroradiology
52
,
921
928
(
2010
).
72.
K.
Futami
,
T.
Kitabayashi
,
H.
Sano
,
K.
Misaki
,
N.
Uchiyama
,
F.
Ueda
, and
M.
Nakada
, “
Inflow jet patterns of unruptured cerebral aneurysms based on the flow velocity in the parent artery: Evaluation using 4D flow MRI
,”
Am. J. Neuroradiol.
37
,
1318
1323
(
2016
).
73.
N.
Lin
,
A.
Ho
,
B. A.
Gross
,
S.
Pieper
,
K. U.
Frerichs
,
A. L.
Day
, and
R.
Du
, “
Differences in simple morphological variables in ruptured and unruptured middle cerebral artery aneurysms
,”
J. Neurosurg.
117
,
913
919
(
2012
).
74.
G. G.
Ferguson
, “
Turbulence in human intracranial saccular aneurysms
,”
J. Neurosurg.
33
,
485
497
(
1970
).
75.
T. D.
Mast
and
A. D.
Pierce
, “
A theory of aneurysm sounds
,”
J. Biomech.
28
,
1045
1053
(
1995
).
76.
D. A.
Bruneau
,
D. A.
Steinman
, and
K.
Valen-Sendstad
, “
Understanding intracranial aneurysm sounds via high-fidelity fluid-structure-interaction modelling
,”
Commun. Med.
3
,
163
(
2023
).
77.
H.
Baek
,
M.
Jayaraman
,
P.
Richardson
, and
G.
Karniadakis
, “
Flow instability and wall shear stress variation in intracranial aneurysms
,”
J. R. Soc. Interface
7
,
967
988
(
2010
).
78.
M. D.
Ford
and
U.
Piomelli
, “
Exploring high frequency temporal fluctuations in the terminal aneurysm of the basilar bifurcation
,”
J. Biomech. Eng.
134
(
9
),
091003
(
2012
).
79.
K.
Valen-Sendstad
,
K.-A.
Mardal
, and
D. A.
Steinman
, “
High-resolution CFD detects high-frequency velocity fluctuations in bifurcation, but not sidewall, aneurysms
,”
J. Biomech.
46
,
402
407
(
2013
).
80.
J. C.
Lasheras
, “
The biomechanics of arterial aneurysms
,”
Annu. Rev. Fluid Mech.
39
,
293
319
(
2007
).
81.
C.
Chatpattanasiri
,
G.
Franzetti
,
M.
Bonfanti
,
V.
Diaz-Zuccarini
, and
S.
Balabani
, “
Towards reduced order models via robust proper orthogonal decomposition to capture personalised aortic haemodynamics
,”
J. Biomech.
158
,
111759
(
2023
).
82.
S.
Norouzi
,
L.
Floc'h
,
G.
Di Labbio
, and
L.
Kadem
, “
Flow examination in abdominal aortic aneurysms: Reduced-order models driven by in vitro data and spectral proper orthogonal decomposition
,”
Phys. Fluids
33
,
111708
(
2021
).
83.
I.
Cohen
and
G.
Gilboa
, “
Examining the limitations of dynamic mode decomposition through Koopman theory analysis
,” arXiv:2107.07456 (
2021
).
84.
C. A.
Taylor
and
C.
Figueroa
, “
Patient-specific modeling of cardiovascular mechanics
,”
Annu. Rev. Biomed. Eng.
11
,
109
134
(
2009
).
85.
T. T. G.
Le
,
S. W.
Ryu
,
J. J.
Yoon
,
T.
Nam
, and
J.
Ryu
, “
Assessing the impact of fetal-type posterior cerebral artery variations on cerebral hemodynamics
,”
Phys. Fluids
36
,
101901
(
2024
).
86.
D.
Stephenson
,
A.
Patronis
,
D. M.
Holland
, and
D. A.
Lockerby
, “
Generalizing Murray's law: An optimization principle for fluidic networks of arbitrary shape and scale
,”
J. Appl. Phys.
118
,
174302
(
2015
).
87.
K.
Kono
,
T.
Fujimoto
,
A.
Shintani
, and
T.
Terada
, “
Hemodynamic characteristics at the rupture site of cerebral aneurysms: A case study
,”
Neurosurgery
76
,
E1202
E1209
(
2012
).
88.
O.
Shekhtman
,
G. S.
Sioutas
,
G.
Piavchenko
,
S.
Bhalla
,
D. L.
Cooke
,
E.
Winkler
,
J.-K.
Burkhardt
, and
V. M.
Srinivasan
, “
Endovascular biopsy in neurointerventional surgery: A systematic review
,”
Interv. Neuroradiol.
0
(
0
); (
2024
).
89.
P.
Holmes
,
J. L.
Lumley
,
G.
Berkooz
, and
C. W.
Rowley
, “
Contents
,” in
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
, Cambridge Monographs on Mechanics (
Cambridge University Press
,
2012
), pp.
v
viii
.
90.
J. N.
Kutz
,
S. L.
Brunton
,
B. W.
Brunton
, and
J. L.
Proctor
,
Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems
(
SIAM
,
2016
).
You do not currently have access to this content.