Microbiologically influenced corrosion (MIC) is a universal issue of significant concern in the petroleum industry, with the potential for enormous economic losses and casualties. This study focused on the effect of temperature on MIC and the corrosion mechanism. The corrosion rate, morphology, corrosion products, and microbial community composition of produced fluid samples from the Zhanjiang oilfield were measured after anaerobic culture at 30 and 60 °C for 14 days. The corrosion rate of the Z1 and Z2 samples decreased with increasing temperature, while the corrosion rate of the Z3 sample changed from light corrosion to heavy corrosion. The Z1 sample was dominated by pitting corrosion, the Z2 sample had a relatively smooth surface, and the Z3 sample was observed to have one dimensional wormhole corrosion at 60 °C. The microbial community composition by 16S ribosomal deoxyribonucleic acid (rDNA) sequence showed that the bacterial communities were dominated by Pseudomonas and Bacillus, and the archaeal communities were mainly composed of Methanothermobacter, Methanosaeta, and Candidatus Nitrosotenuis, which was prevalent in Z3 samples at 60 °C. It suggested that MIC could be caused by extracellular electron transfer and reduction of nitrate or nitrite to N2 and NH4+ by bacteria, and utilization of CO2 to produce CH4 by archaea. Overall, the results of this study can provide comprehensive data and new insights into corrosion management strategies for oil fields.

1.
B.
Chugh
,
Sheetal
,
M.
Singh
,
S.
Thakur
,
B.
Pani
,
A. K.
Singh
, and
V. S.
Saji
, “
Extracellular electron transfer by Pseudomonas aeruginosa in biocorrosion: A review
,”
ACS Biomater. Sci. Eng.
8
,
1049
(
2022
).
2.
K.
Usher
,
A.
Kaksonen
,
I.
Cole
, and
D.
Marney
, “
Critical review: Microbially influenced corrosion of buried carbon steel pipes
,”
Int. Biodeterior. Biodegrad.
93
,
84
(
2014
).
3.
D.
Xu
,
T.
Gu
, and
D. R.
Lovley
, “
Microbially mediated metal corrosion
,”
Nat. Rev. Microbiol.
21
,
705
(
2023
).
4.
B.
Hou
,
X.
Li
,
X.
Ma
,
C.
Du
,
D.
Zhang
,
M.
Zheng
,
W.
Xu
,
D.
Lu
, and
F.
Ma
, “
The cost of corrosion in China
,”
Npj Mater. Degrad.
1
,
4
(
2017
).
5.
Z.
Wang
,
Y.
Li
,
J.
Ren
,
W.
Xu
, and
L.
Yang
, “
Investigating the effects of environment, corrosion degree, and distribution of corrosive microbial communities on service-life of refined oil pipelines
,”
Environ. Sci. Pollut. Res.
29
,
52204
(
2022
).
6.
P.
Parthipan
,
P.
Elumalai
,
J.
Narenkumar
,
L. L.
Machuca
,
K.
Murugan
,
O. P.
Karthikeyan
, and
A.
Rajasekar
, “
Allium sativum (garlic extract) as a green corrosion inhibitor with biocidal properties for the control of MIC in carbon steel and stainless steel in oilfield environments
,”
Int. Biodeterior. Biodegrad.
132
,
66
(
2018
).
7.
J.
Wu
,
P.
Wang
,
J.
Gao
,
F.
Tan
,
D.
Zhang
,
Y.
Cheng
, and
S.
Chen
, “
Comparison of water-line corrosion processes in natural and artificial seawater: The role of microbes
,”
Electrochem. Commun.
80
,
9
(
2017
).
8.
R.
Jia
,
T.
Unsal
,
D.
Xu
,
Y.
Lekbach
, and
T.
Gu
, “
Microbiologically influenced corrosion and current mitigation strategies: A state of the art review
,”
Int. Biodeterior. Biodegrad.
137
,
42
(
2019
).
9.
F.
Mansfeld
, “
The interaction of bacteria and metal surfaces
,”
Electrochim. Acta
52
,
7670
(
2007
).
10.
M.
Sharma
,
H.
Liu
,
N.
Tsesmetzis
,
J.
Handy
,
T.
Place
, and
L. M.
Gieg
, “
Diagnosing microbiologically influenced corrosion at a crude oil pipeline facility leak site-A multiple lines of evidence approach
,”
Int. Biodeterior. Biodegrad.
172
,
105438
(
2022
).
11.
C.
Li
,
J.
Wu
,
D.
Zhang
,
P.
Wang
,
L.
Zhu
,
Y.
Gao
, and
W.
Wang
, “
Effects of Pseudomonas aeruginosa on EH40 steel corrosion in the simulated tidal zone
,”
Water Res.
232
,
119708
(
2023
).
12.
Y.
Pu
,
W.
Dou
,
Y. F.
Cheng
,
S.
Chen
,
Z.
Xu
, and
Z.
Chen
, “
Biogenic H2S and extracellular electron transfer resulted in two-coexisting mechanisms in 90/10 Cu-Ni alloy corrosion by a sulfate-reducing bacteria
,”
Corros. Sci.
211
,
110911
(
2023
).
13.
P.
Parthipan
,
L.
Cheng
,
P.
Dhandapani
, and
A.
Rajasekar
, “
Metagenomics diversity analysis of sulfate-reducing bacteria and their impact on biocorrosion and mitigation approach using an organometallic inhibitor
,”
Sci. Total Environ.
856
,
159203
(
2023
).
14.
H.
Harada
,
S.
Uemura
, and
K.
Momonoi
, “
Interaction between sulfate-reducing bacteria and methane-producing bacteria in UASB reactors fed with low strength wastes containing different levels of sulfate
,”
Water Res.
28
,
355
(
1994
).
15.
Y.
Huang
,
E.
Zhou
,
C.
Jiang
,
R.
Jia
,
S.
Liu
,
D.
Xu
,
T.
Gu
, and
F.
Wang
, “
Endogenous phenazine-1-carboxamide encoding gene PhzH regulated the extracellular electron transfer in biocorrosion of stainless steel by marine Pseudomonas aeruginosa
,”
Electrochem. Commun.
94
,
9
(
2018
).
16.
H.-Y.
Tang
,
C.
Yang
,
T.
Ueki
,
C. C.
Pittman
,
D.
Xu
,
T. L.
Woodard
,
D. E.
Holmes
,
T.
Gu
,
F.
Wang
, and
D. R.
Lovley
, “
Stainless steel corrosion via direct iron-to-microbe electron transfer by Geobacter species
,”
ISME J.
15
,
3084
(
2021
).
17.
L.
Chen
,
C.
Cao
,
S.
Wang
,
J. R.
Varcoe
,
R. C.
Slade
,
C.
Avignone-Rossa
, and
F.
Zhao
, “
Electron communication of Bacillus subtilis in harsh environments
,”
IScience
12
,
260
(
2019
).
18.
J.
Mand
,
H. S.
Park
,
C.
Okoro
,
B. P.
Lomans
,
S.
Smith
,
L.
Chiejina
, and
G.
Voordouw
, “
Microbial methane production associated with carbon steel corrosion in a Nigerian oil field
,”
Front. Microbiol.
6
,
1538
(
2016
).
19.
C.
Okoro
,
S.
Smith
,
L.
Chiejina
,
R.
Lumactud
,
D.
An
,
H. S.
Park
,
J.
Voordouw
,
B. P.
Lomans
, and
G.
Voordouw
, “
Comparison of microbial communities involved in souring and corrosion in offshore and onshore oil production facilities in Nigeria
,”
J. Ind. Microbiol. Biot.
41
,
665
(
2014
).
20.
S.
Gang
,
B.
Hui-yong
,
S.
Yong-jiu
, and
W.
Yuan-qing
, “
Overview of research progress for high strength steel structures
,”
Eng. Mech.
30
,
1
(
2013
).
21.
M.
Deyab
and
S.
Keera
, “
Cyclic voltammetric studies of carbon steel corrosion in chloride-formation water solution and effect of some inorganic salts
,”
Egypt. J. Pet.
21
,
31
(
2012
).
22.
X.-X.
Li
,
T.
Yang
,
S. M.
Mbadinga
,
J.-F.
Liu
,
S.-Z.
Yang
,
J.-D.
Gu
, and
B.-Z.
Mu
, “
Responses of microbial community composition to temperature gradient and carbon steel corrosion in production water of petroleum reservoir
,”
Front. Microbiol.
8
,
2379
(
2017
).
23.
Y.
Yang
,
W.
Zhou
,
S.
Yin
,
S. Y.
Wang
,
Q.
Yu
,
M. J.
Olszta
,
Y.-Q.
Zhang
,
S. E.
Zeltmann
,
M.
Li
, and
M.
Jin
, “
One dimensional wormhole corrosion in metals
,”
Nat. Commun.
14
,
988
(
2023
).
24.
P.
Rajala
,
D.-Q.
Cheng
,
S. A.
Rice
, and
F. M.
Lauro
, “
Sulfate-dependant microbially induced corrosion of mild steel in the deep sea: A 10-year microbiome study
,”
Microbiome
10
(
1
),
1
14
(
2022
).
25.
A. A.
Dastgerdi
,
A.
Brenna
,
M.
Ormellese
,
M.
Pedeferri
, and
F.
Bolzoni
, “
Experimental design to study the influence of temperature, pH, and chloride concentration on the pitting and crevice corrosion of UNS S30403 stainless steel
,”
Corros. Sci.
159
,
108160
(
2019
).
26.
Z.
Song
,
Z.
Yao
,
F.
Zhao
,
G.
Sun
, and
W.
Zhu
, “
Wellhead samples of high-temperature, low-permeability petroleum reservoirs reveal the microbial communities in wellbores
,”
Energy Fuels
31
,
4866
(
2017
).
27.
D.
Nicoletti
,
M.
Sharma
, and
L. M.
Gieg
, “
Assessing microbial corrosion risk on offshore crude oil production topsides under conditions of nitrate and nitrite treatment for souring
,”
Microorganisms
10
,
932
(
2022
).
28.
W.
Walters
,
E. R.
Hyde
,
D.
Berg-Lyons
,
G.
Ackermann
,
G.
Humphrey
,
A.
Parada
,
J. A.
Gilbert
,
J. K.
Jansson
,
J. G.
Caporaso
, and
J. A.
Fuhrman
, “
Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys
,”
Msystems
1
,
e00009
(
2016
).
29.
B. J.
Callahan
,
P. J.
McMurdie
,
M. J.
Rosen
,
A. W.
Han
,
A. J. A.
Johnson
, and
S. P.
Holmes
, “
DADA2: High-resolution sample inference from Illumina amplicon data
,”
Nat. Methods
13
,
581
(
2016
).
30.
N. A.
Bokulich
,
B. D.
Kaehler
,
J. R.
Rideout
,
M.
Dillon
,
E.
Bolyen
,
R.
Knight
,
G. A.
Huttley
, and
J.
Gregory Caporaso
, “
Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin
,”
Microbiome
6
,
1
(
2018
).
31.
A.
Chao
, “
Nonparametric estimation of the number of classes in a population
,”
Scand. J. Stat.
11
,
265
270
(
1984
).
32.
C. E.
Shannon
, “
A mathematical theory of communication
,”
Bell Syst. Tech. J.
27
,
379
(
1948
).
33.
E. H.
Simpson
, “
Measurement of diversity
,”
Nature
163
,
688
(
1949
).
34.
G. M.
Douglas
,
V. J.
Maffei
,
J. R.
Zaneveld
,
S. N.
Yurgel
,
J. R.
Brown
,
C. M.
Taylor
,
C.
Huttenhower
, and
M. G.
Langille
, “
PICRUSt2 for prediction of metagenome functions
,”
Nat. Biotechnol.
38
,
685
(
2020
).
35.
L. L.
Barton
and
G. D.
Fauque
, “
Biochemistry, physiology and biotechnology of sulfate-reducing bacteria
,”
Adv. Appl. Microbiol.
68
,
41
(
2009
).
36.
H.
Sun
,
L.
Zhong
,
Y.
Zhu
,
J.
Zhu
, and
Y.
Zhou
, “
Risk prediction for hydrogen sulfide emission based on sulfate-reducing bacteria in the water flooding oilfield
,”
Phys Fluid
36
,
057119
(
2024
).
37.
S.
Deng
,
B.
Wang
,
S.
Su
,
S.
Sun
,
Y.
She
, and
F.
Zhang
, “
Dynamics of microbial community and removal of hydrogen sulfide (H2S) using a bio-inhibitor and its application under the oil reservoir condition
,”
Energy Fuels
36
,
14128
(
2022
).
38.
NACE International
,
Standard Recommended Practice: Preparation, Installation, Analysis, and Interpretation of Corrosion Coupons in Oilfield Operations
(
NACE International
,
2005
).
39.
S.
Kokilaramani
,
M. M.
Al-Ansari
,
A.
Rajasekar
,
F. S.
Al-Khattaf
,
A.
Hussain
, and
M.
Govarthanan
, “
Microbial influenced corrosion of processing industry by re-circulating waste water and its control measures-A review
,”
Chemosphere
265
,
129075
(
2021
).
40.
P.
Stoodley
,
K.
Sauer
,
D. G.
Davies
, and
J. W.
Costerton
, “
Biofilms as complex differentiated communities
,”
Annu. Rev. Microbiol.
56
,
187
(
2002
).
41.
F. M.
AIAbbas
,
J. R.
Spear
,
A.
Kakpovbia
,
N. M.
Balhareth
,
D. L.
Olson
, and
B.
Mishra
, “
Bacterial attachment to metal substrate and its effects on microbiologically-influenced corrosion in transporting hydrocarbon pipelines
,”
J. Pipeline. Eng.
11
,
63
(
2012
).
42.
C. O.
Obuekwe
,
D. W.
Westlake
,
F. D.
Cook
, and
J.
William Costerton
, “
Surface changes in mild steel coupons from the action of corrosion-causing bacteria
,”
Appl. Environ. Microbiol.
41
,
766
(
1981
).
43.
D.
Enning
,
H.
Venzlaff
,
J.
Garrelfs
,
H. T.
Dinh
,
V.
Meyer
,
K.
Mayrhofer
,
A. W.
Hassel
,
M.
Stratmann
, and
F.
Widdel
, “
Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust
,”
Environ. Microbiol.
14
,
1772
(
2012
).
44.
T.
Hoshino
,
H.
Doi
,
G.-I.
Uramoto
,
L.
Wörmer
,
R. R.
Adhikari
,
N.
Xiao
,
Y.
Morono
,
S.
D'Hondt
,
K.-U.
Hinrichs
, and
F.
Inagaki
, “
Global diversity of microbial communities in marine sediment
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
27587
(
2020
).
45.
Q.
Wang
,
J.
Liang
,
S.
Zhang
,
B. A.
Yoza
,
Q. X.
Li
,
Y.
Zhan
,
H.
Ye
,
P.
Zhao
, and
C.
Chen
, “
Characteristics of bacterial populations in an industrial scale petrochemical wastewater treatment plant: Composition, function and their association with environmental factors
,”
Environ. Res.
189
,
109939
(
2020
).
46.
B. J.
Baker
,
V.
De Anda
,
K. W.
Seitz
,
N.
Dombrowski
,
A. E.
Santoro
, and
K. G.
Lloyd
, “
Diversity, ecology and evolution of Archaea
,”
Nat. Microbiol.
5
,
887
(
2020
).
47.
M. W.
Friedrich
,
D.
Schmitt-Wagner
,
T.
Lueders
, and
A.
Brune
, “
Axial differences in community structure of Crenarchaeota and Euryarchaeota in the highly compartmentalized gut of the soil-feeding termite Cubitermes orthognathus
,”
Appl. Environ. Microbiol.
67
,
4880
(
2001
).
48.
M.
Ray
,
V.
Kumar
, and
C.
Banerjee
, “
Kinetic modelling, production optimization, functional characterization and phyto-toxicity evaluation of biosurfactant derived from crude oil biodegrading Pseudomonas sp. IITISM 19
,”
Environ. Chem. Eng.
10
,
107190
(
2022
).
49.
J.
Yin
,
X.
Wei
,
F.
Hu
,
C.
Cheng
,
X.
Zhuang
,
M.
Song
,
G.
Zhuang
,
F.
Wang
, and
A.
Ma
, “
Halotolerant Bacillus velezensis sustainably enhanced oil recovery of low permeability oil reservoirs by producing biosurfactant and modulating the oil microbiome
,”
Chem. Eng. J.
453
,
139912
(
2023
).
50.
E. J.
Gudina
,
J. F.
Pereira
,
R.
Costa
,
J. A.
Coutinho
,
J. A.
Teixeira
, and
L. R.
Rodrigues
, “
Biosurfactant-producing and oil-degrading Bacillus subtilis strains enhance oil recovery in laboratory sand-pack columns
,”
J. Hazard. Mate.
261
,
106
(
2013
).
51.
P. M.
Tribelli
and
N. I.
López
, “
Insights into the temperature responses of Pseudomonas species in beneficial and pathogenic host interactions
,”
Appl. Microbiol. Biotechnol.
106
,
7699
(
2022
).
52.
M. M.
Yakimov
,
M. M.
Amro
,
M.
Bock
,
K.
Boseker
,
H. L.
Fredrickson
,
D. G.
Kessel
, and
K. N.
Timmis
, “
The potential of Bacillus licheniformis strains for in situ enhanced oil recovery
,”
J. Pet. Sci. Eng.
18
,
147
(
1997
).
53.
L. A.
Sauder
,
K.
Engel
,
C.-C.
Lo
,
P.
Chain
, and
J. D.
Neufeld
, “
‘Candidatus Nitrosotenuis aquarius,’ an ammonia-oxidizing archaeon from a freshwater aquarium biofilter
,”
Appl. Environ. Microb.
84
,
e01430
(
2018
).
54.
S.
Hou
,
Y.
Pu
,
S.
Chen
,
G.
Lv
,
W.
Wang
, and
W.
Li
, “
Mitigation effects of ammonium on microbiologically influenced corrosion of 90/10 copper-nickel alloy caused by Pseudomonas aeruginosa
,”
Int. Biodeterior. Biodegrad.
189
,
105762
(
2024
).
55.
D.
Xu
,
Y.
Li
,
F.
Song
, and
T.
Gu
, “
Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis
,”
Corros. Sci.
77
,
385
(
2013
).
56.
L.
Huang
,
W.
Chang
,
D.
Zhang
,
Y.
Huang
,
Z.
Li
,
Y.
Lou
,
H.
Qian
,
C.
Jiang
,
X.
Li
, and
A.
Mol
, “
Acceleration of corrosion of 304 stainless steel by outward extracellular electron transfer of Pseudomonas aeruginosa biofilm
,”
Corros. Sci.
199
,
110159
(
2022
).
57.
Z.
Guo
,
T.
Liu
,
Y. F.
Cheng
,
N.
Guo
, and
Y.
Yin
, “
Adhesion of Bacillus subtilis and Pseudoalteromonas lipolytica to steel in a seawater environment and their effects on corrosion
,”
Colloids. Surf. B
157
,
157
(
2017
).
58.
L. J.
McKay
,
K. B.
Klingelsmith
,
A. M.
Deutschbauer
,
W. P.
Inskeep
, and
M. W.
Fields
, “
Draft genome sequence of Methanothermobacter thermautotrophicus WHS, a thermophilic hydrogenotrophic methanogen from Washburn Hot Springs in Yellowstone National Park, USA
,”
Microbiol. Resour. Ann.
10
,
e01157
(
2021
).
59.
N.
Mei
,
P.-L.
Tremblay
,
Y.
Wu
, and
T.
Zhang
, “
Proposed mechanisms of electron uptake in metal-corroding methanogens and there potential for CO2 bioconversion applications
,”
Sci. Total Environ.
923
,
171384
(
2024
).
60.
P. A.
Palacios
,
W. R.
Francis
, and
A.-E.
Rotaru
, “
A win–loss interaction on Fe0 between methanogens and acetogens from a climate lake
,”
Front. Microbiol.
12
,
638282
(
2021
).
61.
E.
Miranda
,
M.
Bethencourt
,
F.
Botana
,
M.
Cano
,
J.
Sánchez-Amaya
,
A.
Corzo
,
J. G.
De Lomas
,
M.-L.
Fardeau
, and
B.
Ollivier
, “
Biocorrosion of carbon steel alloys by an hydrogenotrophic sulfate-reducing bacterium Desulfovibrio capillatus isolated from a Mexican oil field separator
,”
Corros. Sci.
48
,
2417
(
2006
).
62.
S.
Yuk
,
A. H.
Azam
,
K.
Miyanaga
, and
Y.
Tanji
, “
The contribution of nitrate-reducing bacterium Marinobacter YB03 to biological souring and microbiologically influenced corrosion of carbon steel
,”
Biochem. Eng. J.
156
,
107520
(
2020
).
You do not currently have access to this content.