The hydrodynamic interactions among bacterial cell bodies, flagella, and surrounding boundaries are crucial for understanding bacterial motility in complex environments. In this study, we demonstrate that each slender flagellum can be modeled as a series of spheres and the interactions between these spheres can be accurately characterized using a resistance matrix. This approach allows us to effectively and efficiently evaluate the propulsive effects of the flagella. Notably, our investigation into bacterial motility near a colloidal sphere reveals significant discrepancies between results derived from the twin multipole moment and those obtained through resistive force theory. Consequently, neglecting the hydrodynamic interactions among cell bodies, flagella, and colloidal spheres may lead to substantial inaccuracies. Our model simplifies bacteria into a series of spheres, making it well-suited for examining bacterial motility near spherical boundaries and the nonlinear deformation dynamics of elastic flagella.

1.
E.
Lauga
, “
Bacterial hydrodynamics
,”
Annu. Rev. Fluid Mech.
48
,
105
130
(
2016
).
2.
J. S.
Guasto
,
R.
Rusconi
, and
R.
Stocker
, “
Fluid mechanics of planktonic microorganisms
,”
Annu. Rev. Fluid Mech.
44
,
373
400
(
2012
).
3.
M.
Silverman
and
M.
Simon
, “
Flagellar rotation and the mechanism of bacterial motility
,”
Nature
249
,
73
74
(
1974
).
4.
E.
Lauga
and
T. R.
Powers
, “
The hydrodynamics of swimming microorganisms
,”
Rep. Prog. Phys.
72
,
096601
(
2009
).
5.
M.
Kargar
,
A.
Pruden
, and
W. A.
Ducker
, “
Preventing bacterial colonization using colloidal crystals
,”
J. Mater. Chem. B
2
,
5962
5971
(
2014
).
6.
A. P.
Petroff
,
X.-L.
Wu
, and
A.
Libchaber
, “
Fast-moving bacteria self-organize into active two-dimensional crystals of rotating cells
,”
Phys. Rev. Lett.
114
,
158102
(
2015
).
7.
Y.-R.
Chang
,
E. R.
Weeks
, and
W. A.
Ducker
, “
Surface topography hinders bacterial surface motility
,”
ACS Appl. Mater. Interfaces
10
,
9225
9234
(
2018
).
8.
O.
Sipos
,
K.
Nagy
,
R.
Di Leonardo
, and
P.
Galajda
, “
Hydrodynamic trapping of swimming bacteria by convex walls
,”
Phys. Rev. Lett.
114
,
258104
(
2015
).
9.
S.
Kamdar
,
S.
Shin
,
P.
Leishangthem
,
L. F.
Francis
,
X.
Xu
, and
X.
Cheng
, “
The colloidal nature of complex fluids enhances bacterial motility
,”
Nature
603
,
819
823
(
2022
).
10.
S. E.
Spagnolie
and
P. T.
Underhill
, “
Swimming in complex fluids
,”
Annu. Rev. Condens. Matter Phys.
14
,
381
415
(
2023
).
11.
C.-K.
Tung
and
S. S.
Suarez
, “
Co-adaptation of physical attributes of the mammalian female reproductive tract and sperm to facilitate fertilization
,”
Cells
10
,
1297
(
2021
).
12.
M. R.
Raveshi
,
M. S.
Abdul Halim
,
S. N.
Agnihotri
,
M. K.
O'Bryan
,
A.
Neild
, and
R.
Nosrati
, “
Curvature in the reproductive tract alters sperm-surface interactions
,”
Nat. Commun.
12
,
3446
(
2021
).
13.
S.
Khalid
,
A.
Gao
,
G.
Wang
,
P. K.
Chu
, and
H.
Wang
, “
Tuning surface topographies on biomaterials to control bacterial infection
,”
Biomater. Sci.
8
,
6840
6857
(
2020
).
14.
T.
Vissers
,
A. T.
Brown
,
N.
Koumakis
,
A.
Dawson
,
M.
Hermes
,
J.
Schwarz-Linek
,
A. B.
Schofield
,
J. M.
French
,
V.
Koutsos
,
J.
Arlt
et al, “
Bacteria as living patchy colloids: Phenotypic heterogeneity in surface adhesion
,”
Sci. Adv.
4
,
eaao1170
(
2018
).
15.
G.
Volpe
,
I.
Buttinoni
,
D.
Vogt
,
H.-J.
Kümmerer
, and
C.
Bechinger
, “
Microswimmers in patterned environments
,”
Soft Matter
7
,
8810
8815
(
2011
).
16.
D.
Takagi
,
J.
Palacci
,
A. B.
Braunschweig
,
M. J.
Shelley
, and
J.
Zhang
, “
Hydrodynamic capture of microswimmers into sphere-bound orbits
,”
Soft Matter
10
,
1784
1789
(
2014
).
17.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media
(
Springer Science & Business Media
,
2012
), Vol.
1
.
18.
S.
Kim
and
S. J.
Karrila
,
Microhydrodynamics: Principles and Selected Applications
(
Butterworth-Heinemann
,
2013
).
19.
J.
Gray
and
G. J.
Hancock
, “
The propulsion of sea-urchin spermatozoa
,”
J. Exp. Biol.
32
,
802
814
(
1955
).
20.
J.
Lighthill
, “
Flagellar hydrodynamics
,”
SIAM Rev.
18
,
161
230
(
1976
).
21.
L.
Koens
and
E.
Lauga
, “
The boundary integral formulation of stokes flows includes slender-body theory
,”
J. Fluid Mech.
850
,
R1
(
2018
).
22.
Y.
Mori
,
L.
Ohm
, and
D.
Spirn
, “
Theoretical justification and error analysis for slender body theory
,”
Commun. Pure Appl. Math.
73
,
1245
1314
(
2020
).
23.
T.
Dabroś
, “
A singularity method for calculating hydrodynamic forces and particle velocities in low-Reynolds-number flows
,”
J. Fluid Mech.
156
,
1
21
(
1985
).
24.
R.
Cortez
, “
The method of regularized stokeslets
,”
SIAM J. Sci. Comput.
23
,
1204
1225
(
2001
).
25.
R.
Cortez
,
L.
Fauci
, and
A.
Medovikov
, “
The method of regularized stokeslets in three dimensions: Analysis, validation, and application to helical swimming
,”
Phys. Fluids
17
,
031504
(
2005
).
26.
D.
Smith
,
E.
Gaffney
,
J.
Blake
, and
J.
Kirkman-Brown
, “
Human sperm accumulation near surfaces: A simulation study
,”
J. Fluid Mech.
621
,
289
320
(
2009
).
27.
C. S.
Peskin
, “
The immersed boundary method
,”
Acta Numerica.
11
,
479
517
(
2002
).
28.
S. D.
Olson
,
S.
Lim
, and
R.
Cortez
, “
Modeling the dynamics of an elastic rod with intrinsic curvature and twist using a regularized stokes formulation
,”
J. Comput. Phys.
238
,
169
187
(
2013
).
29.
E.
Wajnryb
,
K. A.
Mizerski
,
P. J.
Zuk
, and
P.
Szymczak
, “
Generalization of the Rotne–Prager–Yamakawa mobility and shear disturbance tensors
,”
J. Fluid Mech.
731
,
R3
(
2013
).
30.
P. J.
Zuk
,
E.
Wajnryb
,
K.
Mizerski
, and
P.
Szymczak
, “
Rotne–Prager–Yamakawa approximation for different-sized particles in application to macromolecular bead models
,”
J. Fluid Mech.
741
,
R5
(
2014
).
31.
G.
Vizsnyiczai
,
G.
Frangipane
,
S.
Bianchi
,
F.
Saglimbeni
,
D.
Dell'Arciprete
, and
R.
Dario Leonardo
, “
A transition to stable one-dimensional swimming enhances E. coli motility through narrow channels
,”
Nat. Commun.
11
,
2340
(
2020
).
32.
R.
Di Leonardo
,
D.
Dell'Arciprete
,
L.
Angelani
, and
V.
Iebba
, “
Swimming with an image
,”
Phys. Rev. Lett.
106
,
038101
(
2011
).
33.
F. Z.
Temel
,
A. G.
Erman
, and
S.
Yesilyurt
, “
Characterization and modeling of biomimetic untethered robots swimming in viscous fluids inside circular channels
,”
IEEE/ASME Trans. Mechatron.
19
,
1562
1573
(
2013
).
34.
H.
Shum
and
E. A.
Gaffney
, “
Hydrodynamic analysis of flagellated bacteria swimming near one and between two no-slip plane boundaries
,”
Phys. Rev. E
91
,
033012
(
2015
).
35.
D.
Pimponi
,
M.
Chinappi
,
P.
Gualtieri
, and
C. M.
Casciola
, “
Hydrodynamics of flagellated microswimmers near free-slip interfaces
,”
J. Fluid Mech.
789
,
514
533
(
2016
).
36.
H.
Shum
,
E. A.
Gaffney
, and
D. J.
Smith
, “
Modelling bacterial behaviour close to a no-slip plane boundary: The influence of bacterial geometry
,”
Proc. R Soc. A
466
,
1725
1748
(
2010
).
37.
D.
Loi
,
S.
Mossa
, and
L. F.
Cugliandolo
, “
Non-conservative forces and effective temperatures in active polymers
,”
Soft Matter
7
,
10193
10209
(
2011
).
38.
A.
Martín-Gómez
,
T.
Eisenstecken
,
G.
Gompper
, and
R. G.
Winkler
, “
Active Brownian filaments with hydrodynamic interactions: Conformations and dynamics
,”
Soft Matter
15
,
3957
3969
(
2019
).
39.
S. Y.
Reigh
,
R. G.
Winkler
, and
G.
Gompper
, “
Synchronization and bundling of anchored bacterial flagella
,”
Soft Matter
8
,
4363
4372
(
2012
).
40.
D. J.
Jeffrey
, “
Conduction through a random suspension of spheres
,”
Proc. Roy. Soc. London. A.
335
,
355
367
(
1973
).
41.
D.
Jeffrey
and
Y.
Onishi
, “
Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow
,”
J. Fluid Mech.
139
,
261
290
(
1984
).
42.
L. J.
Durlofsky
and
J. F.
Brady
, “
Dynamic simulation of bounded suspensions of hydrodynamically interacting particles
,”
J. Fluid Mech.
200
,
39
67
(
1989
).
43.
T.
Pedley
and
J. O.
Kessler
, “
Hydrodynamic phenomena in suspensions of swimming microorganisms
,”
Annu. Rev. Fluid Mech.
24
,
313
358
(
1992
).
44.
M.
Guan
,
W.
Jiang
,
L.
Tao
,
G.
Chen
, and
J. H.
Lee
, “
Migration of confined micro-swimmers subject to anisotropic diffusion
,”
J. Fluid Mech.
985
,
A44
(
2024
).
45.
B.
Rodenborn
,
C.-H.
Chen
,
H. L.
Swinney
,
B.
Liu
, and
H.
Zhang
, “
Propulsion of microorganisms by a helical flagellum
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
E338
E347
(
2013
).
46.
R.
Vogel
and
H.
Stark
, “
Rotation-induced polymorphic transitions in bacterial flagella
,”
Phys. Rev. Lett.
110
,
158104
(
2013
).
47.
K.
Son
,
J. S.
Guasto
, and
R.
Stocker
, “
Bacteria can exploit a flagellar buckling instability to change direction
,”
Nat. Phys.
9
,
494
498
(
2013
).
48.
G.
Saggiorato
,
L.
Alvarez
,
J. F.
Jikeli
,
U. B.
Kaupp
,
G.
Gompper
, and
J.
Elgeti
, “
Human sperm steer with second harmonics of the flagellar beat
,”
Nat. Commun.
8
,
1415
(
2017
).
49.
M. J.
Kühn
,
F. K.
Schmidt
,
B.
Eckhardt
, and
K. M.
Thormann
, “
Bacteria exploit a polymorphic instability of the flagellar filament to escape from traps
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
6340
6345
(
2017
).
50.
H.-W.
Huang
,
F. E.
Uslu
,
P.
Katsamba
,
E.
Lauga
,
M. S.
Sakar
, and
B. J.
Nelson
, “
Adaptive locomotion of artificial microswimmers
,”
Science Adv.
5
,
eaau1532
(
2019
).
51.
H.
Xu
,
M.
Medina-Sánchez
,
V.
Magdanz
,
L.
Schwarz
,
F.
Hebenstreit
, and
O. G.
Schmidt
, “
Sperm-hybrid micromotor for targeted drug delivery
,”
ACS Nano
12
,
327
337
(
2018
).
52.
L.
Durlofsky
,
J. F.
Brady
, and
G.
Bossis
, “
Dynamic simulation of hydrodynamically interacting particles
,”
J. Fluid Mech.
180
,
21
49
(
1987
).
53.
J. F.
Brady
and
G.
Bossis
, “
Stokesian dynamics
,”
Annu. Rev. Fluid Mech.
20
,
111
157
(
1988
).
54.
T.
Schlick
and
W. K.
Olson
, “
Trefoil knotting revealed by molecular dynamics simulations of supercoiled DNA
,”
Science
257
,
1110
1115
(
1992
).
55.
R. M.
Jendrejack
,
D. C.
Schwartz
,
M. D.
Graham
, and
J. J.
De Pablo
, “
Effect of confinement on DNA dynamics in microfluidic devices
,”
J. Chem. Phys.
119
,
1165
1173
(
2003
).
56.
R. M.
Jendrejack
,
D. C.
Schwartz
,
J. J.
De Pablo
, and
M. D.
Graham
, “
Shear-induced migration in flowing polymer solutions: Simulation of long-chain DNA in microchannels
,”
J. Chem. Phys.
120
,
2513
2529
(
2004
).
57.
C. M.
Schroeder
,
E. S. G.
Shaqfeh
, and
S.
Chu
, “
Effect of hydrodynamic interactions on DNA dynamics in extensional flow: Simulation and single molecule experiment
,”
Macromolecules
37
,
9242
9256
(
2004
).
58.
T.
Ando
and
J.
Skolnick
, “
On the importance of hydrodynamic interactions in lipid membrane formation
,”
Biophys. J.
104
,
96
105
(
2013
).
59.
M. K.
Jawed
,
N. K.
Khouri
,
F.
Da
,
E.
Grinspun
, and
P. M.
Reis
, “
Propulsion and instability of a flexible helical rod rotating in a viscous fluid
,”
Phys. Rev. Lett.
115
,
168101
(
2015
).
60.
A. T.
Chwang
and
T. Y.-T.
Wu
, “
Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for stokes flows
,”
J. Fluid Mech.
67
,
787
815
(
1975
).
You do not currently have access to this content.