In this Letter, the numerical simulation of axisymmetric hydrodynamic relativistic jet propagation was performed by solving the hydrodynamic relativistic Euler equation using the computer code PLUTO [Mignone et al., Astrophys. J. Suppl. Ser. 170, 228 (2007)]. The detailed flow features involved in this relativistic jet propagation has been thoroughly discussed in this present numerical study. The effect of the jet Lorentz factor ( ) on the shock–turbulence interaction has been studied by analyzing the divergence of the Lamb vector ( ). The strong coexistence of two layers and enhances the momentum transfer due to energy difference, causing turbulence amplification.
REFERENCES
1.
A.
Mignone
,
G.
Bodo
,
S.
Massaglia
,
T.
Matsakos
,
O. E.
Tesileanu
,
C.
Zanni
, and
A.
Ferrari
, “
Pluto: A numerical code for computational astrophysics
,” Astrophys. J. Suppl. Ser.
170
, 228
(2007
).2.
T.
Piran
, “
The physics of gamma-ray bursts
,” Rev. Mod. Phys.
76
, 1143
–1210
(2005
).3.
B. M.
Gaensler
and
P. O.
Slane
, “
The evolution and structure of pulsar wind nebulae
,” Annu. Rev. Astron. Astrophys.
44
, 17
–47
(2006
).4.
M.
Hardcastle
and
J.
Croston
, “
Radio galaxies and feedback from AGN jets
,” New Astron. Rev.
88
, 101539
(2020
).5.
E. M. D. G.
Dal Pino
, “
Astrophysical jets and outflows
,” Adv. Space Res.
35
, 908
–924
(2005
).6.
D. R.
Pasham
,
M.
Lucchini
,
T.
Laskar
,
B. P.
Gompertz
,
S.
Srivastav
,
M.
Nicholl
,
S. J.
Smartt
,
J. C.
Miller-Jones
,
K. D.
Alexander
,
R.
Fender
et al, “
The birth of a relativistic jet following the disruption of a star by a cosmological black hole
,” Nat. Astron.
7
, 88
–104
(2022
).7.
T.
Savolainen
,
D.
Homan
,
T.
Hovatta
,
M.
Kadler
,
Y.
Kovalev
,
M.
Lister
,
E.
Ros
, and
J.
Zensus
, “
Relativistic beaming and gamma-ray brightness of blazars
,” Astron. Astrophys.
512
, A24
(2010
).8.
M. L.
Lister
,
M.
Aller
,
H.
Aller
,
D. C.
Homan
,
K.
Kellermann
,
Y. Y.
Kovalev
,
A.
Pushkarev
,
J.
Richards
,
E.
Ros
, and
T.
Savolainen
, “
MOJAVE. X. Parsec-scale jet orientation variations and superluminal motion in active galactic nuclei
,” Astron. J.
146
, 120
(2013
).9.
L.
Nava
,
R.
Desiante
,
F.
Longo
,
A.
Celotti
,
N.
Omodei
,
G.
Vianello
,
E.
Bissaldi
, and
T.
Piran
, “
Constraints on the bulk Lorentz factor of gamma-ray burst jets from fermi/LAT upper limits
,” Mon. Not. R. Astron. Soc.
465
, 811
(2017
).10.
M.
Norman
,
K.-H.
Winkler
,
L.
Smarr
, and
M.
Smith
, “
Structure and dynamics of supersonic jets
,” Astron. Astrophys.
113
(2
), 285
–302
(1982
).11.
A. H.
Bridle
, “
Physics of energy transport in extragalactic radio sources
,” in Proceedings of NRAO Workshop No. 9
, Green Bank, WV, July 30-August 3 (1984
).12.
J. M.
Martí
,
E.
Müller
, and
J. M.
Ibáñez
, “
Hydrodynamical simulations of relativistic jets
,” Astron. Astrophys.
281
(1
), L9
–L12
(1994
).13.
J. M.
Martí
,
E.
Müller
,
J.
Font
,
J. M. Z.
Ibáñez
, and
A.
Marquina
, “
Morphology and dynamics of relativistic jets
,” Astrophys. J.
479
, 151
(1997
).14.
S.
Komissarov
, “
Numerical simulations of relativistic magnetized jets
,” Mon. Not. R. Astron. Soc.
308
, 1069
–1076
(1999
).15.
J.
Seo
,
H.
Kang
,
D.
Ryu
,
S.
Ha
, and
I.
Chattopadhyay
, “
A simulation study of ultra-relativistic jets–I. A new code for relativistic hydrodynamics
,” Astrophys. J.
920
, 143
(2021
).16.
M.
Perucho
and
J.
López-Miralles
, “
Numerical simulations of relativistic jets
,” J. Plasma Phys.
89
, 915890501
(2023
).17.
S.
Mandal
,
P. C.
Duffell
, and
Y.
Li
, “
Numerical investigation of dynamical and morphological trends in relativistic jets
,” Astrophys. J.
935
, 42
(2022
).18.
P.
Abolmasov
and
O.
Bromberg
, “
Interface instabilities in hydrodynamic relativistic jets
,” Mon. Not. R. Astron. Soc.
520
, 3009
–3026
(2023
).19.
P. A.
Hughes
,
M. A.
Miller
, and
G. C.
Duncan
, “
Three-dimensional hydrodynamic simulations of relativistic extragalactic jets
,” Astrophys. J.
572
, 713
(2002
).20.
E.
Choi
,
P. J.
Wiita
, and
D.
Ryu
, “
Hydrodynamic interactions of relativistic extragalactic jets with dense clouds
,” Astrophys. J.
655
, 769
(2007
).21.
D.
Ryu
, Hydrodynamic Interactions of Relativistic Extragalactic Jets with Dense Clouds
(
American Astronomical Society
, 2006
).22.
G.
Mattia
,
L.
Del Zanna
,
M.
Bugli
,
A.
Pavan
,
R.
Ciolfi
,
G.
Bodo
, and
A.
Mignone
, “
Resistive relativistic MHD simulations of astrophysical jets
,” Astron. Astrophys.
679
, A49
(2023
).23.
L.
Del Zanna
,
E.
Papini
,
S.
Landi
,
M.
Bugli
, and
N.
Bucciantini
, “
Fast reconnection in relativistic plasmas: The magnetohydrodynamics tearing instability revisited
,” Mon. Not. R. Astron. Soc.
460
, 3753
–3765
(2016
).24.
A.
Chernoglazov
,
B.
Ripperda
, and
A.
Philippov
, “
Dynamic alignment and plasmoid formation in relativistic magnetohydrodynamic turbulence
,” Astrophys. J. Lett.
923
, L13
(2021
).25.
Q.
Qian
,
C.
Fendt
,
S.
Noble
, and
M.
Bugli
, “
rHARM: Accretion and ejection in resistive gr-mhd
,” Astrophys. J.
834
, 29
(2017
).26.
C.
Vourellis
,
C.
Fendt
,
Q.
Qian
, and
S. C.
Noble
, “
GR-MHD disk winds and jets from black holes and resistive accretion disks
,” Astrophys. J.
882
, 2
(2019
).27.
B.
Ripperda
,
F.
Bacchini
, and
A. A.
Philippov
, “
Magnetic reconnection and hot spot formation in black hole accretion disks
,” Astrophys. J.
900
, 100
(2020
).28.
B.
Ripperda
,
M.
Liska
,
K.
Chatterjee
,
G.
Musoke
,
A. A.
Philippov
,
S. B.
Markoff
,
A.
Tchekhovskoy
, and
Z.
Younsi
, “
Black hole flares: Ejection of accreted magnetic flux through 3D plasmoid-mediated reconnection
,” Astrophys. J. Lett.
924
, L32
(2022
).29.
A.
Nathanail
,
V.
Mpisketzis
,
O.
Porth
,
C. M.
Fromm
, and
L.
Rezzolla
, “
Magnetic reconnection and plasmoid formation in three-dimensional accretion flows around black holes
,” Mon. Not. R. Astron. Soc.
513
, 4267
–4277
(2022
).30.
J. A.
Kramer
and
N. R.
MacDonald
, “
Ray-tracing in relativistic jet simulations: A polarimetric study of magnetic field morphology and electron scaling relations
,” Astron. Astrophys.
656
, A143
(2021
).31.
R. K.
Joshi
and
I.
Chattopadhyay
, “
The morphology and dynamics of relativistic jets with relativistic equation of state
,” Astrophys. J.
948
, 13
(2023
).32.
R. K.
Joshi
,
S.
Debnath
, and
I.
Chattopadhyay
, “
Shocks in radiatively driven time-dependent, relativistic jets around black holes
,” Astrophys. J.
933
, 75
(2022
).33.
R. K.
Joshi
,
I.
Chattopadhyay
,
A.
Tsokaros
, and
P. K.
Tripathi
, “
Numerical simulation of radiatively driven transonic relativistic jets
,” Astrophys. J.
971
, 13
(2024
).34.
D.
Mukherjee
,
G.
Bodo
,
P.
Rossi
,
A.
Mignone
, and
B.
Vaidya
, “
Simulating the dynamics and synchrotron emission from relativistic jets–II. Evolution of non-thermal electrons
,” Mon. Not. R. Astron. Soc.
505
, 2267
–2284
(2021
).35.
A.
Mignone
,
T.
Plewa
, and
G.
Bodo
, “
The piecewise parabolic method for multidimensional relativistic fluid dynamics
,” Astrophys. J. Suppl. Ser.
160
, 199
(2005
).36.
S.
Falle
and
S.
Komissarov
, “
An upwind numerical scheme for relativistic hydrodynamics with a general equation of state
,” Mon. Not. R. Astron. Soc.
278
, 586
–602
(1996
).37.
J. M.
Martı
and
E.
Müller
, “
Extension of the piecewise parabolic method to one-dimensional relativistic hydrodynamics
,” J. Comput. Phys.
123
, 1
–14
(1996
).38.
M. A.
Aloy
,
J. M.
Ibánez
,
J. M.
Martí
, and
E.
Müller
, “
Genesis: A high-resolution code for three-dimensional relativistic hydrodynamics
,” Astrophys. J. Suppl. Ser.
122
, 151
(1999
).39.
W.
Zhang
and
A. I.
MacFadyen
, “
Ram: A relativistic adaptive mesh refinement hydrodynamics code
,” Astrophys. J. Suppl. Ser.
164
, 255
(2006
).40.
D.
Radice
and
L.
Rezzolla
, “
THC: A new high-order finite-difference high-resolution shock-capturing code for special-relativistic hydrodynamics
,” Astron. Astrophys.
547
, A26
(2012
).41.
J.
Núñez-de La Rosa
and
C.-D.
Munz
, “
XTROEM-FV: A new code for computational astrophysics based on very high order finite-volume methods–II. Relativistic hydro-and magnetohydrodynamics
,” Mon. Not. R. Astron. Soc.
460
, 535
–559
(2016
).42.
L.
Del Zanna
and
N.
Bucciantini
, “
An efficient shock-capturing central-type scheme for multidimensional relativistic flows-I. Hydrodynamics
,” Astron. Astrophys.
390
, 1177
–1186
(2002
).43.
C. J.
White
,
J. M.
Stone
, and
C. F.
Gammie
, “
An extension of the Athena++ code framework for GRMHD based on advanced Riemann solvers and staggered-mesh constrained transport
,” Astrophys. J. Suppl. Ser.
225
, 22
(2016
).44.
A. S.
Almgren
,
V. E.
Beckner
,
J. B.
Bell
,
M.
Day
,
L. H.
Howell
,
C.
Joggerst
,
M.
Lijewski
,
A.
Nonaka
,
M.
Singer
, and
M.
Zingale
, “
Castro: A new compressible astrophysical solver. I. Hydrodynamics and self-gravity
,” Astrophys. J.
715
, 1221
(2010
).45.
E. E.
Schneider
and
B. E.
Robertson
, “
CHOLLA: A new massively parallel hydrodynamics code for astrophysical simulation
,” Astrophys. J. Suppl. Ser.
217
, 24
(2015
).46.
K. N.
Gourgouliatos
and
S. S.
Komissarov
, “
Reconfinement and loss of stability in jets from active galactic nuclei
,” Nat. Astron.
2
, 167
–171
(2017
).47.
48.
A.
Taub
, “
Relativistic Rankine-Hugoniot equations
,” Phys. Rev.
74
, 328
(1948
).49.
50.
A.
Mignone
and
J. C.
McKinney
, “
Equation of state in relativistic magnetohydrodynamics: Variable versus constant adiabatic index
,” Mon. Not. R. Astron. Soc.
378
, 1118
–1130
(2007
).51.
E. F.
Toro
, “
The weighted average flux method applied to the Euler equations
,” Philos. Trans. R. Soc. London. Ser. A
341
, 499
–530
(1992
).52.
E. F.
Toro
, “
The HLLC Riemann solver
,” Shock waves
29
, 1065
–1082
(2019
).53.
A.
Mignone
and
G.
Bodo
, “
An HLLC Riemann solver for relativistic flows—I. Hydrodynamics
,” Mon. Not. R. Astron. Soc.
364
, 126
–136
(2005
).54.
A.
Mignone
and
G.
Bodo
, “
An HLLC Riemann solver for relativistic flows–II. Magnetohydrodynamics
,” Mon. Not. R. Astron. Soc.
368
, 1040
–1054
(2006
).55.
N. K.
Yamaleev
and
M. H.
Carpenter
, “
A systematic methodology for constructing high-order energy stable WENO schemes
,” J. Comput. Phys.
228
, 4248
–4272
(2009
).56.
S.
Rosswog
, “
SPH methods in the modelling of compact objects
,” Living Rev. Comput. Astrophys.
1
, 1
–109
(2015
).57.
R.
Pal
and
A.
Roy
, “
Numerical studies of hydrodynamic relativistic astrophysical jet: The modification of vorticity transport equation
,” Phys. Fluids
36
, 101709
(2024
).58.
P. J.
Roache
, “
Perspective: A method for uniform reporting of grid refinement studies
,” J. Fluids Eng.
116
(3
), 405
–413
(1994
).59.
P. J.
Roache
, “
Quantification of uncertainty in computational fluid dynamics
,” Annu. Rev. Fluid Mech.
29
, 123
–160
(1997
).60.
L. F.
Richardson
, “
Ix. the approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam
,” Philos. Trans. R. Soc. London. Ser. A
210
, 307
–357
(1911
).61.
C. W.
Hamman
,
J. C.
Klewicki
, and
R. M.
Kirby
, “
On the Lamb vector divergence in Navier–Stokes flows
,” J. Fluid Mech.
610
, 261
–284
(2008
).62.
L.-W.
Chen
,
C.-Y.
Xu
, and
X.-Y.
Lu
, “
Numerical investigation of the compressible flow past an aerofoil
,” J. Fluid Mech.
643
, 97
–126
(2010
).63.
D.
Xu
,
J.
Wang
,
M.
Wan
,
C.
Yu
,
X.
Li
, and
S.
Chen
, “
Effect of wall temperature on the kinetic energy transfer in a hypersonic turbulent boundary layer
,” J. Fluid Mech.
929
, A33
(2021
).64.
R.
Pal
,
A.
Roy
, and
P.
Halder
, “
Numerical studies of shock–vortex interaction over a wedge during shock-wave diffraction—A new approach
,” Phys. Fluids
35
, 106106
(2023
).© 2025 Author(s). Published under an exclusive license by AIP Publishing.
2025
Author(s)
You do not currently have access to this content.