Wastewater management has become crucial as the global population grows. Construction wetlands (CWs) have emerged as a promising way to treat wastewater, providing a natural and cost-effective alternative. This review aims to present a state-of-the-art review of CWs for sustainable wastewater management. The major parameters affecting constructed wetlands are characterized as unit parameters, operational parameters, and meteorological parameters. The unit parameters are media and vegetation, and the major operational parameters are hydraulic loading rate and hydraulic flow rate. Among this, the unit and operational parameters can be controlled by operators or design engineers whereas in the case of meteorological parameters the uncontrollable ones. This study examines initially the major interaction between unit and operational parameters affecting the performance of CWs. Then the effect of meteorological parameters are, namely, temperature, wind speed, and relative humidity on unit parameters and operational parameters. Furthermore, overall challenges faced in constructed wetlands are critically reviewed, and suitable recommendations suggested to improve the overall performance are discussed. This review concludes that to maximize CW efficiency, design considerations include selecting appropriate wetlands (surface flow, subsurface flow, hybrid), determining the configuration of a system (horizontal flow or vertical flow), selecting the substrate material, and incorporating innovative technologies such as solar-powered aeration systems and biochar-amended substrates. In the future, integrating wetlands with other advanced treatment technologies, enhancing plant species and microbial consortia, adapting to climate variations, and developing better monitoring and modeling methods.

1.
C.
Ingrao
,
R.
Strippoli
,
G.
Lagioia
, and
D.
Huisingh
, “
Water scarcity in agriculture: An overview of causes, impacts and approaches for reducing the risks
,”
Heliyon
9
(
8
),
e18507
(
2023
).
2.
R. K.
Mishra
, “
Fresh water availability and it's global challenge
,”
J. Mar. Sci. Res.
2
(
1
),
1
3
(
2023
).
3.
P.
Kumar
,
A.
Date
,
N.
Mahmood
,
R.
Kumar Das
, and
B.
Shabani
, “
Freshwater supply for hydrogen production: An underestimated challenge
,”
Int. J. Hydrogen Energy
78
,
202
217
(
2024
).
4.
M. M.
Khan
,
S. A.
Siddiqi
,
A. A.
Farooque
,
Q.
Iqbal
,
S. A.
Shahid
,
M. T.
Akram
,
S.
Rahman
,
W.
Al-Busaidi
, and
I.
Khan
, “
Towards sustainable application of wastewater in agriculture: A review on reusability and risk assessment
,”
Agronomy
12
(
6
),
1397
(
2022
).
5.
V. A.
Tzanakakis
,
N. V.
Paranychianakis
, and
A. N.
Angelakis
, “
Water supply and water scarcity
,”
Water
12
(
9
),
2347
(
2020
).
6.
I.
Ali
,
I.
Naz
,
C.
Peng
,
K. A.
Abd-Elsalam
,
Z. M.
Khan
,
T.
Islam
,
R.
Pervez
,
M. A.
Amjed
,
A.
Tehrim
,
I.
Perveen
, and
S.
Sehar
, “
Chapter 2—Sources, classifications, constituents, and available treatment technologies for various types of wastewater: An overview
,” in 
Aquananotechnology
, edited by
K. A.
Abd-Elsalam
and
M.
Zahid
(
Elsevier
,
2021
), pp.
11
46
.
7.
T. R.
Kumaraswamy
,
S.
Javeed
,
M.
Javaid
, and
K.
Naika
, “
Impact of pollution on quality of freshwater ecosystems
,” in
Fresh Water Pollution Dynamics and Remediation
(
Springer
,
2020
), pp.
69
81
.
8.
S.
Roy
,
Advanced Industrial Wastewater Treatment and Reclamation of Water Comparative Study of Water Pollution
(
Springer
,
2022
).
9.
I.
Dekker
,
S.
Sharifyazd
,
E.
Batung
, and
K. L.
Dubrawski
, “
Maximizing benefits to nature and society in techno‐ecological innovation for water
,”
Sustainability
13
(
11
),
1
16
(
2021
).
10.
O. V.
Martin
and
N.
Voulvoulis
, “
Sustainable risk management of emerging contaminants in municipal wastewaters
,”
Philos. Trans. R. Soc. A
367
(
1904
),
3895
3922
(
2009
).
11.
A. G.
Capodaglio
,
A.
Callegari
,
D.
Cecconet
, and
D.
Molognoni
, “
Sustainability of decentralized wastewater treatment technologies
,”
Water Pract. Technol.
12
(
2
),
463
477
(
2017
).
12.
Y. H.
Teow
,
K. C.
Ho
,
S. R.
Wickramasinghe
,
M. G.
Jebur
, and
Z. H.
Chang
, “
Chapter 3—Integrated process technology for recycling and re-use of industrial and municipal wastewater: A review
,” in 
Integrated Environmental Technologies for Wastewater Treatment and Sustainable Development
, edited by
V.
Kumar
and
M.
Kumar
(
Elsevier
,
2022
), pp.
49
80
.
13.
D.
Parde
,
A.
Patwa
,
A.
Shukla
,
R.
Vijay
,
D. J.
Killedar
, and
R.
Kumar
, “
A review of constructed wetland on type, treatment and technology of wastewater
,”
Environ. Technol. Innov.
21
,
101261
(
2021
).
14.
S.
Wu
,
S.
Wallace
,
H.
Brix
,
P.
Kuschk
,
W. K.
Kirui
,
F.
Masi
, and
R.
Dong
, “
Treatment of industrial effluents in constructed wetlands: Challenges, operational strategies and overall performance
,”
Environ. Pollut.
201
,
107
120
(
2015
).
15.
S.
Kesarwani
,
D.
Panwar
,
J.
Mal
,
N.
Pradhan
, and
R.
Rani
, “
Constructed wetland coupled microbial fuel cell: A clean technology for sustainable treatment of wastewater and bioelectricity generation
,”
Fermentation
9
(
1
),
6
(
2023
).
16.
C. U.
Emenike
,
B.
Jayanthi
,
P.
Agamuthu
, and
S. H.
Fauziah
, “
Biotransformation and removal of heavy metals: A review of phytoremediation and microbial remediation assessment on contaminated soil
,”
Environ. Rev.
26
(
2
),
156
168
(
2018
).
17.
T. A.
Aragaw
, “
Functions of various bacteria for specific pollutants degradation and their application in wastewater treatment: A review
,”
Int. J. Environ. Sci. Technol.
18
(
7
),
2063
2076
(
2021
).
18.
P.
Sharma
,
S. P.
Singh
, and
Y. W.
Tong
, “
Phytoremediation employing constructed wetlands
,” in
Current Developments in Biotechnology and Bioengineering: Advances in Phytoremediation Technology
 (
Elsevier
,
2022
), pp.
93
108
.
19.
N.
Jahan
,
M.
Tahmid
,
A. Z.
Shoronika
,
A.
Fariha
,
H.
Roy
,
M. N.
Pervez
,
Y.
Cai
,
V.
Naddeo
, and
M. S.
Islam
, “
A comprehensive review on the sustainable treatment of textile wastewater: zero liquid discharge and resource recovery perspectives
,”
Sustainability
14
(
22
),
1
38
(
2022
).
20.
C. B.
Agaton
and
P. M. C.
Guila
, “
Ecosystem services valuation of constructed wetland as a nature-based solution to wastewater treatment
,”
Earth
4
(
1
),
78
92
(
2023
).
21.
S.
Knapp
,
S.
Schmauck
, and
A.
Zehnsdorf
, “
Biodiversity impact of green roofs and constructed wetlands as progressive eco-technologies in urban areas
,”
Sustainability
11
(
20
),
5846
(
2019
).
22.
S.
Kumar
and
V.
Dutta
, “
Constructed wetland microcosms as sustainable technology for domestic wastewater treatment: An overview
,”
Environ. Sci. Pollut. Res.
26
(
12
),
11662
11673
(
2019
).
23.
A. I.
Stefanakis
, “
The role of constructedwetlands as green infrastructure for sustainable urban water management
,”
Sustainability
11
(
24
),
6981
(
2019
).
24.
R.
Pinninti
,
V.
Kasi
,
L.
Sallangi
,
S. R.
Landa
,
M.
Rathinasamy
,
C.
Sangamreddi
, and
P. R.
Dandu Radha
, “
Performance of Canna Indica based microscale vertical flow constructed wetland under tropical conditions for domestic wastewater treatment
,”
Int. J. Phytorem.
24
(
7
),
684
694
(
2022
).
25.
J.
Nivala
,
C.
Murphy
, and
A.
Freeman
, “
Recent advances in the application, design, and operations & maintenance of aerated treatment wetlands
,”
Water
12
(
4
),
1188
2020
).
26.
S. I.
Abou-Elela
, “Constructed wetlands: The green technology for municipal wastewater treatment and reuse in agriculture,”
Handb. Environ. Chem.
75,
189
239
(
2019
).
27.
A.
Wdowczyk
and
A.
Szymańska-Pulikowska
, “
Effect of substrates on the potential of Phragmites australis to accumulate and translocate selected contaminants from landfill leachate
,”
Water Resour. Ind.
29
,
100203
(
2023
).
28.
C. E.
Allison
and
S. I.
Safferman
, “
Evaluation of a greenhouse ecosystem to treat craft beverage wastewater
,”
Sustainability
16
(
17
),
7395
(
2024
).
29.
V. T.
Chaves
,
D. M.
Morita
,
R. C.
Contrera
, and
I. R. S.
Chao
, “
Phosphorus recovery from sewage with a sustainable and low-cost treatment system
,”
Water Sci. Technol.
80
(
5
),
846
854
(
2019
).
30.
A.
Corzo
and
O.
Sanabria
, “
Adaptation of vegetation in high-rate constructed wetland using artificial carriers for bacterial growth: Assessment using phytopathological indicators
,”
J. Water Process Eng.
32
,
100974
(
2019
).
31.
T.
Saeed
and
T.
Khan
, “
Constructed wetlands for industrial wastewater treatment: Alternative media, input biodegradation ratio and unstable loading
,”
J. Environ. Chem. Eng.
7
(
2
),
103042
(
2019
).
32.
T.
Saeed
,
N.
Majed
,
T.
Khan
, and
H.
Mallika
, “
Two-stage constructed wetland systems for polluted surface water treatment
,”
J. Environ. Manage.
249
,
109379
(
2019
).
33.
N. I.
Ismail
,
S. R. S.
Abdullah
,
M.
Idris
,
S. B.
Kurniawan
,
M. I.
Effendi Halmi
,
N. H.
AL Sbani
,
O. H.
Jehawi
, and
H. A.
Hasan
, “
Applying rhizobacteria consortium for the enhancement of Scirpus grossus growth and phytoaccumulation of Fe and Al in pilot constructed wetlands
,”
J. Environ. Manage.
267
,
110643
(
2020
).
34.
T.
Saeed
,
S.
Muntaha
,
M.
Rashid
,
G.
Sun
, and
A.
Hasnat
, “
Industrial wastewater treatment in constructed wetlands packed with construction materials and agricultural by-products
,”
J. Clean. Prod.
189
,
442
453
(
2018
).
35.
G.
Hua
,
W.
Zhu
,
L.
Zhao
, and
Y.
Zhang
, “
Applying solubilization treatment to reverse clogging in laboratory-scale vertical flow constructed wetlands
,”
Water Sci. Technol.
61
(
6
),
1479
1487
(
2010
).
36.
S. T.
Miranda
,
A. T.
de Matos
,
M. P.
de Matos
,
C. B.
Saraiva
, and
D. L.
Teixeira
, “
Influence of the substrate type and position of plant species on clogging and the hydrodynamics of constructed wetland systems
,”
J. Water Process Eng.
31
,
100871
(
2019
).
37.
A.
Miwa
,
A. K.
Maharjan
,
K.
Nishida
,
K.
Mori
, and
T.
Toyama
, “
Characterization of laboratory-scale tidal flow constructed wetlands in the removal of organic carbon and nitrogen from sewage
,”
J. Water Environ. Technol.
21
(
3
),
180
189
(
2023
).
38.
D. M. R.
Mateus
and
H. J. O.
Pinho
, “
Evaluation of solid waste stratified mixtures as constructed wetland fillers under different operation modes
,”
J. Clean. Prod.
253
,
119986
(
2020
).
39.
T.
Liu
,
D.
Li
,
Y.
Tian
,
J.
Zhou
,
Y.
Qiu
,
D.
Li
,
G.
Liu
, and
Y.
Feng
, “
Enhancing nitrogen removal in constructed wetlands: The role of influent substrate concentrations in integrated vertical-flow systems
,”
Environ. Sci. Ecotechnology
21
,
100411
(
2024
).
40.
P.
Malinowski
,
W.
Dąbrowski
, and
B.
Karolinczak
, “
Application of new filling material based on combined heat and power waste for sewage treatment in constructed wetlands
,”
Materials
17
(
2
),
389
(
2024
).).
41.
S.
Zamora
,
L.
Sandoval
,
J. L.
Marín-Muñíz
,
G.
Fernández-Lambert
, and
M. G.
Hernández-Orduña
, “
Impact of ornamental vegetation type and different substrate layers on pollutant removal in constructed wetland mesocosms treating rural community wastewater
,”
Processes
7
(
8
),
531
(
2019
).
42.
G. D.
Gikas
,
V. A.
Papaevangelou
,
V. A.
Tsihrintzis
,
M.
Antonopoulou
, and
I. K.
Konstantinou
, “
Removal of emerging pollutants in horizontal subsurface flow and vertical flow pilot-scale constructed wetlands
,”
Processes
9
(
12
),
2200
(
2021
).
43.
M. L.
Merino-Solís
,
E.
Villegas
,
J.
de Anda
, and
A.
López-López
, “
The effect of the hydraulic retention time on the performance of an ecological wastewater treatment system: An anaerobic filter with a constructed wetland
,”
Water
7
(
3
),
1149
1163
(
2015
).
44.
G.
David
,
M. S.
Rana
,
S.
Saxena
,
S.
Sharma
,
D.
Pant
, and
S. K.
Prajapati
, “
A review on design, operation, and maintenance of constructed wetlands for removal of nutrients and emerging contaminants
,”
Int. J. Environ. Sci. Technol.
20
(
8
),
9249
9270
(
2023
).
45.
J.
Vymazal
,
Y.
Zhao
, and
Ü.
Mander
, “
Recent research challenges in constructed wetlands for wastewater treatment: A review
,”
Ecol. Eng.
169
,
106318
(
2021
).
46.
P.
Singh
,
G.
Singh
,
A.
Singh
,
V. K.
Mishra
, and
R.
Shukla
, “
Macrophytes for utilization in constructed wetland as efficient species for phytoremediation of emerging contaminants from wastewater
,”
Wetlands
44
(
2
),
22
(
2024
).
47.
A. I.
Stefanakis
and
V. A.
Tsihrintzis
, “
Performance of pilot-scale vertical flow constructed wetlands treating simulated municipal wastewater: Effect of various design parameters
,”
Desalination
248
(
1–3
),
753
770
(
2009
).
48.
L.
Zhao
,
J.
Zhang
,
Z.
Guo
,
Z.
Hu
, and
H.
Wu
, “
Recycling various wastes as substrates in constructed wetlands: A review on enhancing contaminants removal and potential risks
,”
Sci. Total Environ.
957
,
177749
(
2024
).
49.
R.
Shruthi
and
G. P.
Shivashankara
, “
Effect of HRT and seasons on the performance of pilot-scale horizontal subsurface flow constructed wetland to treat rural wastewater
,”
Water Pract. Technol.
17
(
1
),
445
455
(
2022
).
50.
A.
Labella
,
D.
Caniani
,
T.
Hughes-Riley
,
R. H.
Morris
,
M. I.
Newton
,
P.
Hawes
,
J.
Puigagut
,
J.
García
, and
E.
Uggetti
, “
Assessing the economic suitability of aeration and the influence of bed heating on constructed wetlands treatment efficiency and life-span
,”
Ecol. Eng.
83
,
184
190
(
2015
).
51.
V.
Sankararajan
,
N.
Neelakandhan
, and
S.
Chandrasekaran
, “
Modeling of constructed wetland performance in BOD5 removal for domestic wastewater under changes in relative humidity using genetic programming
,”
Environ. Monit. Assess.
189
(
4
),
164
(
2017
).
52.
H.
Ali
,
Y.
Min
,
X.
Yu
,
Y.
Kooch
,
P.
Marnn
, and
S.
Ahmed
, “
Composition of the microbial community in surface flow-constructed wetlands for wastewater treatment
,”
Front. Microbiol.
15
,
1
15
(
2024
).
53.
J.
García
,
D. P. L.
Rousseau
,
J.
Morató
,
E.
Lesage
,
V.
Matamoros
, and
J. M.
Bayona
, “
Contaminant removal processes in subsurface-flow constructed wetlands: A review
,”
Crit. Rev. Environ. Sci. Technol.
40
(
7
),
561
661
(
2010
).
54.
M. A.
Salinas-Toledano
,
T. L.
Gómez-Borraz
,
M. A.
Belmont
, and
F. Y.
Garcia-Becerra
, “
Optimizing constructed wetland design and operation for dual benefits: A critical review to enhance micropollutant removal while mitigating greenhouse gas emissions
,”
Environ. Res.
263
,
120144
(
2024
).
55.
S.
Chandrasekaran
,
V.
Sankararajan
,
N.
Neelakandhan
, and
M.
Ram Kumar
, “
Genetic programming-based mathematical modeling of influence of weather parameters in BOD5 removal by Lemna minor
,”
Environ. Monit. Assess.
189
(
12
),
607
(
2017
).
56.
C.
Shen
,
D.
Yang
, and
B.
Dong
, “
A new operation mode solving clogging problems of horizontal subsurface constructed wetlands
,”
Water Sci. Technol.
62
(
5
),
1045
1051
(
2010
).
57.
F.
Chioggia
,
M.
Grigatti
,
S.
Lavrnić
, and
A.
Toscano
, “
Constructed wetland biomass for compost production: Evaluation of effects on crops and soil
,”
Ecol. Eng.
207
,
107339
(
2024
).
58.
M.
Liu
,
Y.
He
,
L.
Cao
,
Y.
Zhi
,
X.
He
,
T.
Li
,
Y.
Wei
,
X.
Yuan
,
B.
Liu
,
Q.
He
,
H.
Li
, and
X.
Miao
, “
Fate of dissolved inorganic nitrogen in turbulent rivers: The critical role of dissolved oxygen levels
,”
Environ. Pollut.
312
,
120074
(
2022
).
59.
M. J.
dos
S.
Lopes
,
M. B.
Dias-Filho
, and
E. S. C.
Gurgel
, “
Successful plant growth-promoting microbes: Inoculation methods and abiotic factors
,”
Front. Sustain. Food Syst.
5
,
1
13
(
2021
).
60.
E.
Tsertou
,
M.
Caluwé
,
D.
Goettert
,
K.
Goossens
,
K. S.
Suazo
,
C.
Vanherck
, and
J.
Dries
, “
Impact of low and high temperatures on aerobic granular sludge treatment of industrial wastewater
,”
Water Sci. Technol.
89
(
3
),
548
561
(
2024
).
61.
A. Y.
Kebriya
,
M.
Nadi
,
E. G.
Parmehr
, and
Z.
Sun
, “
Assessment of some environmental stresses in the Shadegan wetland: Analysis of satellite data, water quality indicators, and dust storm pathways
,”
Iran. J. Energy Environ.
16
(
2
),
372
388
(
2025
).
62.
D. J.
Erickson
,
B.
Sulzberger
,
R. G.
Zepp
, and
A. T.
Austin
, “
Effects of stratospheric ozone depletion, solar UV radiation, and climate change on biogeochemical cycling: Interactions and feedbacks
,”
Photochem. Photobiol. Sci.
14
(
1
),
127
148
(
2014
).
63.
M.
Muloiwa
,
C.
Zvinowanda
, and
I. V.
Sibiya
, “
The effect of microbes and dissolved oxygen concentration on inorganic and organic substances elimination in a climate changing environment: The aerobic bioreactor
,”
Environ. Challenges
17
,
101021
(
2024
).
64.
D. P.
Häder
,
H. D.
Kumar
,
R. C.
Smith
, and
R. C.
Worrest
, “
Aquatic ecosystems: Effects of solar ultraviolet radiation and interactions with other climatic change factors
,”
Photochem. Photobiol. Sci.
2
(
1
),
39
50
(
2003
).
65.
M.
Gavrilescu
, “
Water, soil, and plants interactions in a threatened environment
,”
Water
13
(
19
),
2746
(
2021
).
66.
S.
Vanitha
, “
Study on suitability of single and hybrid constructed wetland for treating sewage for a small community
,”
IOP Conf. Ser.: Mater. Sci. Eng.
955
(
1
),
012094
(
2020
).
67.
P.
Li
,
M.
Liu
,
J.
Zhou
,
L.
Chen
, and
M.
Cai
, “
Adsorption performance of different wetland substrates for ammonia nitrogen: An experimental study
,”
Water
16
(
1
),
1
17
(
2024
).
68.
L.
Zhao
,
W.
Zhu
, and
W.
Tong
, “
Clogging processes caused by biofilm growth and organic particle accumulation in lab-scale vertical flow constructed wetlands
,”
J. Environ. Sci.
21
(
6
),
750
757
(
2009
).
69.
V. S.
Lam
,
T. C. P.
Tran
,
T. D. H.
Vo
,
D. D.
Nguyen
, and
X. C.
Nguyen
, “
Meta-analysis review for pilot and large-scale constructed wetlands: Design parameters, treatment performance, and influencing factors
,”
Sci. Total Environ.
927
,
172140
(
2024
).
70.
T.
Saeed
and
G.
Sun
, “
A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media
,”
J. Environ. Manage.
112
,
429
448
(
2012
).
71.
A.
Stefanatou
,
S.
Schiza
,
I.
Petousi
,
A.
Rizzo
,
F.
Masi
,
A. S.
Stasinakis
,
N.
Fyllas
, and
M. S.
Fountoulakis
, “
Use of climbing and ornamental plants in vertical flow constructed wetlands treating greywater
,”
J. Water Process Eng.
53
,
103832
(
2023
).
72.
C.
Vispo
,
F. K.
Geronimo
,
M.
Jeon
, and
L. H.
Kim
, “
Performance evaluation of various filter media for multi-functional purposes to urban constructed wetlands
,”
Sustainability
16
(
1
), 287 (
2024
).
73.
S. K.
Malyan
,
S.
Yadav
,
V.
Sonkar
,
V. C.
Goyal
,
O.
Singh
, and
R.
Singh
, “
Mechanistic understanding of the pollutant removal and transformation processes in the constructed wetland system
,”
Water Environ. Res.
93
(
10
),
1882
1909
(
2021
).
74.
J. M.
Araújo
,
S.
Berzio
,
T.
Gehring
,
E.
Nettmann
,
L.
Florêncio
, and
M.
Wichern
, “
Influence of temperature on aerobic granular sludge formation and stability treating municipal wastewater with high nitrogen loadings
,”
Environ. Res.
212
,
113578
(
2022
).
75.
P. N.
Karungamye
, “
Potential of Canna indica in constructed wetlands for wastewater treatment: A review
,”
Conservation
2
(
3
),
499
513
(
2022
).
76.
M.
Urso
,
M.
Ussia
, and
M.
Pumera
, “
Smart micro- and nanorobots for water purification
,”
Nat. Rev. Bioeng.
1
(
4
),
236
251
(
2023
).
77.
N.
Riaz
,
M. S.
Khan
,
M.
Sabeen
,
B. S.
Zeb
,
S.
Shaheen
, and
T.
Hayat
, “
Wastewater irrigation and plant growth: An insight into molecular studies
,” in 
Sustainable Plant Nutrition under Contaminated Environments
, edited by
Q.
Mahmood
(
Springer International Publishing
,
Cham
,
2022
), pp.
57
74
.
78.
J.
Gao
,
L.
Yang
,
R.
Zhong
,
Y.
Chen
,
J.
Zhang
,
J.
Gao
,
M.
Cai
, and
J.
Zhang
, “
Comparison of nitrogen and phosphorus removal efficiency between two types of baffled vertical flow constructed wetlands planted with Oenanthe Javanica
,”
Water Sci. Technol.
81
(
9
),
2023
2032
(
2020
).
79.
R.
Shukla
,
D.
Gupta
, and
V. K.
Mishra
, “
Investigation of treatment potential of horizontal subsurface flow constructed wetland for the treatment of secondary treated sewage
,”
Int. J. Environ. Sci. Technol.
21
(
3
),
2965
2974
(
2024
).
80.
A.
Pathan
and
A.
Shrivastav
, “
Biological-based methods for the removal of VOCs and heavy metals
,” in
Bio-Nano Filtration in Industrial Effluent Treatment: Advanced and Innovative Approaches
(
CRC Press
,
2023
), pp.
105
122
.
81.
O.
Ginn
,
L.
Rocha-Melogno
,
A.
Bivins
,
S.
Lowry
,
M.
Cardelino
,
D.
Nichols
,
S. N.
Tripathi
,
F.
Soria
,
M.
Andrade
,
M.
Bergin
,
M. A.
Deshusses
, and
J.
Brown
, “
Detection and quantification of enteric pathogens in aerosols near open wastewater canals in cities with poor sanitation
,”
Environ. Sci. Technol.
55
(
21
),
14758
14771
(
2021
).
82.
G.
Sen Gupta
and
S.
Tiwari
,
Restoration of Wetland Ecosystem: A Trajectory towards a Sustainable Environment
(
Springer
,
2020
).
83.
A. M. N.
Masoud
,
A.
Alfarra
, and
S.
Sorlini
, “
Constructed wetlands as a solution for sustainable sanitation: A comprehensive review on integrating climate change resilience and circular economy
,”
Water
14
(
20
),
3232
(
2022
).
84.
R. F.
Cui
,
Q. H.
Chen
, and
J. X.
Chen
, “
Separation of nanoparticles: Via surfing on chemical wavefronts
,”
Nanoscale
12
(
23
),
12275
12280
(
2020
).
85.
Q.
Liang
,
J.
Zhai
, and
C.
Li
, “
From separation to incorporation: Development of a unifying framework that integrated bird habitats with public recreation spaces within the wetland park system
,”
J. Clean. Prod.
430
,
139647
(
2023
).
86.
A. I.
Stefanakis
, “
Constructed wetlands for sustainable wastewater treatment in hot and arid climates: Opportunities, challenges and case studies in the Middle East
,”
Water
12
(
6
),
1665
(
2020
).
You do not currently have access to this content.