Wettability of droplets and droplet impinging on sparse micropillar-arrayed polydimethylsiloxane (PDMS) surfaces were experimentally investigated. For droplets wetting on these surfaces, the contact line density model combining stability factor and droplet sagging depth was developed to predict whether the droplets were in the Wenzel or Cassie–Baxter wetting state. It was found that droplets on the sparser micropillar-arrayed PDMS surfaces were in the Wenzel wetting state, indicating that a complete rebound cannot happen for droplets impinging on these surfaces. For the case of droplets impinging on sparse micropillar-arrayed PDMS surfaces, it was found that there existed a range of impact velocity for bouncing droplets on the micropatterned surfaces with a solid fraction of 0.022. To predict the upper limit of impact velocity for bouncing droplets, a theoretical model considering the immersion depth of liquid into the micropillar structure was established to make the prediction, and the lower limit of impact velocity for bouncing droplets can be obtained by balancing kinetic energy with energy barrier due to contact angle hysteresis. In addition, the droplet maximum spreading parameter was fitted and found to follow the scale law of We1/4.

1.
H.
Kim
,
C.
Lee
,
M. H.
Kim
, and
J.
Kim
, “
Drop impact characteristics and structure effects of hydrophobic surfaces with micro- and/or nanoscaled structures
,”
Langmuir
28
(
30
),
11250
11257
(
2012
).
2.
X. J.
Feng
and
L.
Jiang
, “
Design and creation of superwetting/antiwetting surfaces
,”
Adv. Mater
18
(
23
),
3063
3078
(
2006
).
3.
X.
Zhang
,
F.
Shi
,
J.
Niu
,
Y.
Jiang
, and
Z.
Wang
, “
Superhydrophobic surfaces: From structural control to functional application
,”
J. Mater. Chem.
18
(
6
),
621
633
(
2008
).
4.
X.
Han
,
J. Q.
Li
,
X.
Tang
,
W.
Li
,
H. B.
Zhao
,
L.
Yang
, and
L. Q.
Wang
, “
Droplet bouncing: Fundamentals, regulations, and applications
,”
Small
18
(
22
),
2200277
(
2022
).
5.
R.
Blossey
, “
Self-cleaning surfaces-virtual realities
,”
Nat. Mater.
2
(
5
),
301
306
(
2003
).
6.
X.
Deng
,
L.
Mammen
,
H. J.
Butt
, and
D.
Vollmer
, “
Candle soot as a template for a transparent robust superamphiphobic coating
,”
Science
335
(
6064
),
67
70
(
2012
).
7.
Y. L.
Xiang
,
S. L.
Huang
,
T. Y.
Huang
,
A.
Dong
,
D.
Cao
,
H. Y.
Li
,
Y. H.
Xue
,
P. Y.
Lv
, and
H. L.
Duan
, “
Supperrepellency of underwater hierarchical structures on Salvinia leaf
,”
Proc. Natl. Acad. Sci. U. S. A.
117
(
5
),
2282
2287
(
2020
).
8.
S.
Pan
,
N.
Wang
,
D.
Xiong
,
Y.
Deng
, and
Y.
Shi
, “
Fabrication of superhydrophobic coating via spraying method and its applications in anti-icing and anti-corrosion
,”
Appl. Surf. Sci.
389
,
547
553
(
2016
).
9.
L.
Mishchenko
,
B.
Hatton
,
V.
Bahadur
,
J. A.
Taylor
,
T.
Krupenkin
, and
J.
Aizenberg
, “
Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets
,”
ACS Nano
4
(
12
),
7699
7707
(
2010
).
10.
H. A.
Stone
, “
Ice-phobic surfaces that are wet
,”
ACS Nano
6
(
8
),
6536
6540
(
2012
).
11.
J. H.
Hong
,
Y. F.
Jin
,
Y. W.
Jin
,
J. F.
Chen
,
Y. L.
Li
, and
J. K.
Chen
, “
Coalescence dynamics of a droplet impacting on a rectangular pixel for inkjet printing
,”
Langmuir
38
(
50
),
15839
15847
(
2022
).
12.
S.
Ray
,
Y.
Han
, and
S.
Cheng
, “
Wetting surface: Experiments and direct numerical simulations
,”
Phys. Fluids
35
(
12
),
122105
(
2023
).
13.
N.
Sharma
,
W. D.
Bachalo
, and
A. K.
Agarwal
, “
Spray droplet size distribution and droplet velocity measurements in a firing optical engine
,”
Phys. Fluids
32
(
2
),
023304
(
2020
).
14.
A. B. D.
Cassie
and
S.
Baxter
, “
Wettability of porous surfaces
,”
Trans. Faraday Soc.
40
,
546
551
(
1944
).
15.
R. N.
Wenzel
, “
Resistance of solid surfaces to wetting by water
,”
Ind. Eng. Chem.
28
(
8
),
988
994
(
1936
).
16.
Q. S.
Zheng
,
Y.
Yu
, and
Z. H.
Zhao
, “
Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces
,”
Langmuir
21
(
26
),
12207
(
2005
).
17.
H.
Mayama
, “
Secret of lotus leaf: Importance of double roughness structures for super water-repellency
,”
J. Photopolym. Sci. Technol.
31
(
6
),
705
710
(
2018
).
18.
S.
Parra-Vicente
,
P. F.
Ibáñez-Ibáñez
,
M.
Cabrerizo-Vílchez
,
I.
Sánchez-Almazo
,
M. Á.
Rodríguez-Valverde
, and
F. J. M.
Ruiz-Cabello
, “
Understanding the petal effect: Wetting properties and surface structure of natural rose petals and rose petal-derived surfaces
,”
Colloids Surf., B
236
,
113832
(
2024
).
19.
G. D.
Bixler
and
B.
Bhushan
, “
Rice-and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow
,”
Nanoscale
6
(
1
),
76
96
(
2014
).
20.
B. T.
Qian
and
Z. Q.
Shen
, “
Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates
,”
Langmuir
21
(
20
),
9007
9009
(
2005
).
21.
N.
Vandencasteele
,
B.
Nisol
,
P.
Viville
,
R.
Lazzaroni
,
D. G.
Castner
, and
F.
Reniers
, “
Plasma-modified PTFE for biological applications: Correlation between protein-resistant properties and surface characteristics
,”
Plasma Processes Polym.
5
(
7
),
661
671
(
2008
).
22.
D. M.
Spori
,
T.
Drobek
,
S.
Zürcher
,
M.
Ochsner
,
C.
Sprecher
,
A.
Mühlebach
, and
N. D.
Spencer
, “
Beyond the lotus effect: Roughness influences on wetting over a wide surface-energy range
,”
Langmuir
24
(
10
),
5411
5417
(
2008
).
23.
S. Y.
Chou
,
C.
Keimel
, and
J.
Gu
, “
Ultrafast and direct imprint of nanostructures in silicon
,”
Nature
417
(
6891
),
835
837
(
2002
).
24.
M. I.
Newton
,
D. L.
Herbertson
,
S. J.
Elliott
,
N. J.
Shirtcliffe
, and
G.
McHale
, “
Electrowetting of liquid marbles
,”
J. Phys. D: Appl. Phys.
40
(
1
),
20
24
(
2007
).
25.
M.
Manca
,
A.
Cannavale
,
L.
De Marco
,
A. S.
Aricò
,
R.
Cingolani
, and
G.
Gigli
, “
Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing
,”
Langmuir
25
(
11
),
6357
6362
(
2009
).
26.
S. L.
Zheng
,
C.
Li
,
Q. T.
Fu
,
T. F.
Xiang
,
W.
Hu
,
J.
Wang
,
S. B.
Ding
,
P. J.
Liu
, and
Z.
Chen
, “
Fabrication of a micro-nanostructured superhydrophobic aluminum surface with excellent corrosion resistance and anti-icing performance
,”
RSC Adv.
6
(
83
),
79389
79400
(
2016
).
27.
J. D.
Wang
,
S.
Chen
, and
D. R.
Chen
, “
Spontaneous transition of a water droplet from the Wenzel state to the Cassie state: A molecular dynamics simulation study
,”
Phys. Chem. Chem. Phys.
17
(
45
),
30533
30539
(
2015
).
28.
P.
Forsberg
,
F.
Nikolajeff
, and
M.
Karlsson
, “
Cassie–Wenzel and Wenzel–Cassie transitions on immersed superhydrophobic surfaces under hydrostatic pressure
,”
Soft Matter
7
(
1
),
104
109
(
2011
).
29.
E.
Bormashenko
,
R.
Pogreb
,
G.
Whyman
,
Y.
Bormashenko
, and
M.
Erlich
, “
Vibration-induced Cassie-Wenzel wetting transition on rough surfaces
,”
Appl. Phys. Lett
90
(
20
),
201917
(
2007
).
30.
V.
Bahadur
and
S. V.
Garimella
, “
Electrowetting-based control of static droplet states on rough surfaces
,”
Langmuir
23
(
9
),
4918
4924
(
2007
).
31.
N.
Kumari
and
S. V.
Garimella
, “
Electrowetting-induced dewetting transitions on superhydrophobic surfaces
,”
Langmuir
27
(
17
),
10342
10346
(
2011
).
32.
D.
Mannetje
,
A.
Banpurkar
,
H.
Koppelman
,
M. H. G.
Duits
,
D.
van den Ende
, and
F.
Mugule
, “
Electrically tunable wetting defects characterized by a simple capillary force sensor
,”
Langmuir
29
(
31
),
9944
9949
(
2013
).
33.
G. M.
Liu
,
L.
Fu
,
A. V.
Rode
, and
V. S. J.
Craig
, “
Water droplet motion control on superhydrophobic surfaces: Exploiting the Wenzel-to-Cassie transition
,”
Langmuir
27
(
6
),
2595
2600
(
2011
).
34.
L.
Barbieri
,
E.
Wagner
, and
P.
Hoffmann
, “
Water wetting transition parameters of perfluorinated substrates with periodically distributed flat-top microscale obstacles
,”
Langmuir
23
(
4
),
1723
1734
(
2007
).
35.
Y. C.
Jung
and
B.
Bhushan
, “
Wetting transition of water droplets on superhydrophobic patterned surfaces
,”
Scr. Mater.
57
(
12
),
1057
1060
(
2007
).
36.
C. W.
Extrand
, “
Criteria for ultralyophobic surfaces
,”
Langmuir
20
(
12
),
5013
5018
(
2004
).
37.
Y. C.
Jung
and
B.
Bhushan
, “
Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces
,”
J. Microsc.
229
(
1
),
127
140
(
2008
).
38.
C.
Dorrer
and
J.
Rühe
, “
Condensation and wetting transitions on microstructured ultrahydrophobic surfaces
,”
Langmuir
23
(
7
),
3820
3824
(
2007
).
39.
M.
Callies
,
Y.
Chen
,
F.
Marty
,
A.
Pepin
, and
D.
Quéré
, “
Microfabricated textured surfaces for super-hydrophobicity investigations
,”
Microelectron. Eng
78–79
,
100
105
(
2005
).
40.
D.
Bartolo
,
F.
Bouamrirene
,
E.
Verneuil
,
A.
Buguin
,
P.
Silberzan
, and
S.
Moulinet
, “
Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces
,”
Europhys. Lett.
74
(
2
),
299
305
(
2006
).
41.
Y. C.
Jung
and
B.
Bhushan
, “
Dynamic effects of bouncing water droplets on superhydrophobic surfaces
,”
Langmuir
24
(
12
),
6262
6269
(
2008
).
42.
T.
Deng
,
K. K.
Varanasi
,
M.
Hsu
,
N.
Bhate
,
C.
Kelmel
,
J.
Stein
, and
M.
Blohm
, “
Nonwetting of impinging droplets on textured surfaces
,”
Appl. Phys. Lett
94
(
13
),
133109
(
2009
).
43.
Y. H.
Jiang
, “
Droplet depinning on superhydrophobic surfaces: From simple rigid wetting to complex soft wetting
,”
Surf. Innov.
10
(
6
),
373
378
(
2022
).
44.
M.
Reyssat
,
J. M.
Yeomans
, and
D.
Quéré
, “
Implament of fakir drop
,”
Europhys. Lett.
81
(
2
),
26006
(
2008
).
45.
T. Q.
Liu
,
Y. J.
Li
,
X. Q.
Li
, and
W.
Sun
, “
Theoretical analysis of droplet transition from Cassie to Wenzel state
,”
Chin. Phys. B
24
(
11
),
116801
(
2015
).
46.
B.
Hou
,
C. Y.
Wu
,
X. G.
Li
,
J. J.
Huang
, and
M. J.
Chen
, “
Contact line-based model for the Cassie-Wenzel transition of a sessile droplet on the hydrophobic micropillar-structured surfaces
,”
Appl. Surf. Sci.
542
,
148611
(
2021
).
47.
M.
Reyssat
,
A.
Pépin
,
F.
Marty
,
Y.
Chen
, and
D.
Quéré
, “
Bouncing transitions on microtextured materials
,”
Europhys. Lett.
74
(
2
),
306
312
(
2006
).
48.
R.
Rioboo
,
M.
Voue
,
A.
Vaillant
, and
J. D.
Coninck
, “
Drop impact on porous superhydrophobic polymer surfaces
,”
Langmuir
24
(
24
),
14074
14077
(
2008
).
49.
L. Z.
Wang
,
A.
Zhou
,
J. Z.
Zhou
,
L. Q.
Chen
, and
Y. S.
Yu
, “
Droplet impact on pillar-arrayed non-wetting surfaces
,”
Soft Matter
17
(
24
),
5932
5940
(
2021
).
50.
L. Z.
Wang
,
X. F.
Huang
,
Q. Z.
Yuan
,
L. Q.
Chen
, and
Y. S.
Yu
, “
Dilute sodium dodecyl sulfate droplets impact on micropillar-arrayed non-wetting surfaces
,”
Phys. Fluids
33
(
10
),
107103
(
2021
).
51.
S. Z.
Wang
,
X. F.
Huang
,
L. Q.
Cheng
, and
Y. S.
Yu
, “
Bouncing droplets on micro-grooved non-wetting surfaces
,”
Phys. Fluids
35
(
2
),
027118
(
2023
).
52.
S. L.
Shi
,
C. J.
Lv
, and
Q. S.
Zheng
, “
Drop impact on two-tier monostable superrepellent surfaces
,”
ACS Appl. Mater. Interfaces
11
(
46
),
43698
43707
(
2019
).
53.
Y. S.
Yu
,
X. F.
Huang
,
L.
Sun
,
J. Z.
Zhou
, and
A.
Zhou
, “
Evaporation of ethanol/water mixture droplets on micro-patterned PDMS surfaces
,”
Int. J. Heat Mass Transfer
144
,
118708
(
2019
).
54.
Y. S.
Yu
,
L.
Sun
,
X. F.
Huang
, and
J. Z.
Zhou
, “
Evaporation of ethanol/water mixture droplets on a pillar-like PDMS surface
,”
Colloids Surf., A
574
,
215
220
(
2019
).
55.
T.
Huhtamäki
,
X.
Tian
,
J. T.
Korhonen
, and
R. H. A.
Ras
, “
Surface-wetting characterization using contact-angle measurements
,”
Nat. Protoc.
13
(
7
),
1521
1538
(
2018
).
56.
C. W.
Extrand
, “
Model for contact angles and hysteresis on rough and ultraphobic surfaces
,”
Langmuir
18
(
21
),
7991
7999
(
2002
).
57.
H. G.
Duan
,
J. K. W.
Yang
, and
K. K.
Berggren
, “
Controlled collapse of high-aspect-ratio nanostructures
,”
Small
7
(
18
),
2661
2668
(
2011
).
58.
T.
Ghosh
,
E. C.
Fritz
,
D.
Balakrishnan
,
Z. Y.
Zhang
,
N.
Vrancken
,
U.
Anand
,
H.
Zhang
,
N. D.
Loh
,
X. M.
Xu
,
F.
Holsteyns
,
C. A.
Nijhuis
, and
U.
Mirsaidov
, “
Preventing the capillary-induced collapse of vertical nanostructures
,”
ACS Appl. Mater. Interfaces
14
(
4
),
5537
5544
(
2022
).
59.
Y. H.
Jiang
,
Z. J.
Xu
,
B.
Li
,
J.
Li
, and
D. S.
Juan
, “
Soft wetting: Droplet receding contact angles on soft superhydrophobic surfaces
,”
Langmuir
39
(
43
),
15401
15408
(
2023
).
60.
C.
Clanet
,
C.
Bguin
,
D.
Richard
, and
D.
Quéré
, “
Maximal deformation of an impacting drop
,”
J. Fluid Mech.
517
,
199
208
(
2004
).
You do not currently have access to this content.