The temporal and spatial evolution of the energetic protons in the Earth's radiation belt is highly correlated with substorm activities. Understanding the variations of the pitch angle distributions (PADs) would be an important and convenient approach to better distinguish the dominant mechanisms. Based on Van Allen Probe observations from 2012 to 2019, the present study surveyed the energetic protons by fitting them as a function of sinn (where is the pitch angle and n is the fitted power-low index). The global distributions show that “typical” (n > 2) pancake PADs occur more frequently on the dayside (>95%) than on the nightside (<20%), showing a distinct day–night asymmetry. This asymmetry becomes much more pronounced for protons at higher energies, at higher L-shells, and during geomagnetic active times. Further investigations demonstrated that the commencement and disappearance of typical pancake PADs are mainly modulated by the plasmapause location. Moreover, “pronounced” (n > 5) and “extreme” (n > 10) pancake PADs can also be found at dayside at L > 5, with occurrence rates of up to 35% and 5%, respectively, during active times. The radial diffusion and magnetopause shadowing effects act as essential processes for increasing and decreasing the occurrence of pancake PADs. In addition, alternative mechanisms, such as wave–particle interactions led by plasma waves, are also important candidates. The present study provides a comprehensive analysis of the dependence of proton PADs on energy and geomagnetic storms, which would be useful for advanced radiation belt modeling.

1.
I. A.
Daglis
,
R. M.
Thorne
,
W.
Baumjohann
, and
S.
Orsini
, “
The terrestrial ring current: Origin, formation, and decay
,”
Rev. Geophys.
37
(
4
),
407
438
, https://doi.org/10.1029/1999RG900009 (
1999
).
2.
M.
Gkioulidou
,
A. Y.
Ukhorskiy
,
D. G.
Mitchell
, and
L. J.
Lanzerotti
, “
Storm time dynamics of ring current protons: Implications for the long-term energy budget in the inner magnetosphere
,”
Geophys. Res. Lett.
43
(
10
),
4736
4744
, https://doi.org/10.1002/2016GL068013 (
2016
).
3.
Y.
Yu
,
M. W.
Liemohn
,
V. K.
Jordanova
,
C.
Lemon
, and
J.
Zhang
, “
Recent advancements and remaining challenges associated with inner magnetosphere cross-energy/population interactions (IMCEPI)
,”
J. Geophys. Res.
124
(
2
),
886
897
, https://doi.org/10.1029/2018JA026282 (
2019
).
4.
H.
Zhao
,
X.
Li
,
D. N.
Baker
,
J. F.
Fennell
,
J. B.
Blake
,
B. A.
Larsen
,
R. M.
Skoug
,
H. O.
Funsten
,
R. H. W.
Friedel
,
G. D.
Reeves
,
H. E.
Spence
,
D. G.
Mitchell
,
L. J.
Lanzerotti
, and
J. V.
Rodriguez
, “
The evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements
,”
J. Geophys. Res.
120
(
9
),
7493
7511
, https://doi.org/10.1002/2015JA021533 (
2015
).
5.
D. L.
Turner
,
Y.
Shprits
,
M.
Hartinger
, and
V.
Angelopoulos
, “
Explaining sudden losses of outer radiation belt electrons during geomagnetic storms
,”
Nat. Phys.
8
(
3
),
208
212
(
2012
).
6.
D. L.
Turner
,
E. K. J.
Kilpua
,
H.
Hietala
,
S. G.
Claudepierre
,
T. P.
O'Brien
,
J. F.
Fennell
,
J. B.
Blake
,
A. N.
Jaynes
,
S.
Kanekal
,
D. N.
Baker
,
H. E.
Spence
,
J.-F.
Ripoll
, and
G. D.
Reeves
, “
The response of Earth's electron radiation belts to geomagnetic storms: Statistics from the Van Allen Probes era including effects from different storm drivers
,”
J. Geophys. Res.
124
(
2
),
1013
1034
, https://doi.org/10.1029/2018JA026066 (
2019
).
7.
X.
Li
, “
Simulation of the prompt energization and transport of radiation
,”
Geophys. Res. Lett.
20
(
22
),
2423
2426
, https://doi.org/10.1029/93GL02701 (
1993
).
8.
D. N.
Baker
,
P. J.
Erickson
,
J. F.
Fennell
,
J. C.
Foster
,
A. N.
Jaynes
, and
P. T.
Verronen
, “
Space weather effects in the Earth's radiation belts
,”
Space Sci. Rev.
214
(
1
),
17
(
2018
).
9.
R. B.
Sheldon
and
D. C.
Hamilton
, “
Ion transport and loss in the Earth's quiet ring current 1. Data and standard model
,”
J. Geophys. Res.
98
,
13491
13508
, https://doi.org/10.1029/92JA02869 (
1993
).
10.
V. K.
Jordanova
and
Y.
Miyoshi
, “
Relativistic model of ring current and radiation belt ions and electrons: Initial results
,”
Geophys. Res. Lett.
32
,
L14104
, https://doi.org/10.1029/2005GL023020 (
2005
).
11.
X.
Lyu
and
W.
Tu
, “
Modeling the dynamics of energetic protons in Earth's inner magnetosphere
,”
J. Geophys. Res. Space Phys.
127
,
e30153
, https://doi.org/10.1029/2021JA030153 (
2022
).
12.
J. C.
Foster
,
J. R.
Wygant
,
M. K.
Hudson
,
A. J.
Boyd
,
D. N.
Baker
,
P. J.
Erickson
, and
H. E.
Spence
, “
Shock-induced prompt relativistic electron acceleration in the inner magnetosphere
,”
J. Geophys. Res.
120
(
3
),
1661
1674
, https://doi.org/10.1002/2014JA020642 (
2015
).
13.
Z.
Zou
,
P.
Zuo
,
B.
Ni
,
Z.
Gao
,
G.
Wang
,
Z.
Zhao
,
X.
Feng
, and
F.
Wei
, “
Two-step dropouts of radiation belt electron phase space density induced by a magnetic cloud event
,”
Astrophys. J. Lett.
895
(
1
),
L24
(
2020
).
14.
Z.
Zou
,
P.
Zuo
,
B.
Ni
,
J.
Wei
,
W.
Zhou
,
H.
Huang
, and
Y.
Xie
, “
Competition between the source and loss processes of radiation belt source, seed, and relativistic electrons induced by a magnetic cloud event
,”
Phys. Fluids
36
(
2
),
026603
(
2024
).
15.
Z.
Su
,
Q.-G.
Zong
,
C.
Yue
,
Y.
Wang
,
H.
Zhang
, and
H.
Zheng
, “
Proton auroral intensification induced by interplanetary shock on 7 November 2004
,”
J. Geophys. Res.
116
,
A08223
, https://doi.org/10.1029/2010JA016239 (
2011
).
16.
X.
Cao
,
B.
Ni
,
D.
Summers
,
Y. Y.
Shprits
,
X.
Gu
,
S.
Fu
,
Y.
Lou
,
Y.
Zhang
,
X.
Ma
,
W.
Zhang
,
H.
Huang
, and
J.
Yi
, “
Sensitivity of EMIC wave-driven scattering loss of ring current protons to wave normal angle distribution
,”
Geophys. Res. Lett.
46
(
2
),
590
598
, https://doi.org/10.1029/2018GL081550 (
2019
).
17.
X.
Cao
,
B.
Ni
,
Y.
Yu
,
L.
Ma
,
P.
Lu
, and
X.
Wang
, “
Comparison of ring current proton losses between contributions from scattering by field line curvature and EMIC waves
,”
J. Geophys. Res.
128
(
12
),
e2023JA031904
, https://doi.org/10.1029/2023JA031904 (
2023
).
18.
D.
Summers
,
B.
Ni
, and
N. P.
Meredith
, “
Timescales for radiation belt electron acceleration and loss due to resonant wave–particle interactions: 1. Theory
,”
J. Geophys. Res.
112
(
A4
),
A04207
(
2007
).
19.
D.
Sibeck
,
R.
Mcentire
,
A.
Lui
,
R.
Lopez
, and
S.
Krimigis
, “
Magnetic-field drift shell splitting—Cause of unusual dayside particle pitch angle distributions during storms and substorms
,”
J. Geophys. Res.
92
(
A12
),
13485
13497
, https://doi.org/10.1029/JA092iA12p13485 (
1987
).
20.
H.
Garcia
and
W.
Spjeldvik
, “
Anisotropy characteristics of geomagnetically trapped ions
,”
J. Geophys. Res.
90
(
NA1
),
347
358
, https://doi.org/10.1029/JA090iA01p00347 (
1985
).
21.
T. A.
Fritz
,
M.
Alothman
,
J.
Bhattacharjya
,
D. L.
Matthews
, and
J. S.
Chen
, “
Butterfly pitch-angle distributions observed by ISEE-1
,”
Planet. Space Sci.
51
(
3
),
205
219
(
2003
).
22.
D. L.
Turner
and
A. Y.
Ukhorskiy
, “
Outer radiation belt losses by magnetopause incursions and outward radial transport: New insight and outstanding questions from the Van Allen Probes era
,” in
The Dynamic Loss of Earth's Radiation Belts
(
Elsevier
,
2019
).
23.
R.
Shi
,
D.
Summers
,
B.
Ni
,
J. W.
Manweiler
,
D. G.
Mitchell
, and
L. J.
Lanzerotti
, “
A statistical study of proton pitch angle distributions measured by the Radiation Belt Storm Probes Ion Composition Experiment
,”
J. Geophys. Res.
121
(
6
),
5233
5249
, https://doi.org/10.1002/2015JA022140 (
2016
).
24.
N. P.
Meredith
,
R. B.
Horne
,
T.
Kersten
,
B. J.
Fraser
, and
R. S.
Grew
, “
Global morphology and spectral properties of EMIC waves derived from CRRES observations
,”
J. Geophys. Res.
119
(
7
),
5328
5342
, https://doi.org/10.1002/2014JA020064 (
2014
).
25.
D. D.
Wang
,
Z. G.
Yuan
,
X. D.
Yu
,
X. H.
Deng
,
M.
Zhou
,
S. Y.
Huang
,
H. M.
Li
,
Z. Z.
Wang
,
Z.
Qiao
,
C. A.
Kletzing
, and
J. R.
Wygant
, “
Statistical characteristics of EMIC waves: Van Allen Probe observations
,”
J. Geophys. Res.
120
(
6
),
4400
4408
, https://doi.org/10.1002/2015JA021089 (
2015
).
26.
L.
Lyons
and
D.
Williams
, “
Storm-associated variations of equatorially mirroring ring current protons, 1–800 kev, at constant 1st adiabatic invariant
,”
J. Geophys. Res.
81
(
1
),
216
220
, https://doi.org/10.1029/JA081i001p00216 (
1976
).
27.
D. G.
Mitchell
,
L. J.
Lanzerotti
,
C. K.
Kim
,
M.
Stokes
,
G.
Ho
,
S.
Cooper
,
A.
Ukhorskiy
,
J. W.
Manweiler
,
S.
Jaskulek
,
D. K.
Haggerty
,
P.
Brandt
,
M.
Sitnov
,
K.
Keika
,
J. R.
Hayes
,
L. E.
Brown
,
R. S.
Gurnee
,
J. C.
Hutcheson
,
K. S.
Nelson
,
N.
Paschalidis
,
E.
Rossano
, and
S.
Kerem
, “
Radiation belt storm probes ion composition experiment (RBSPICE)
,” in
Van Allen Probes Mission
(
Springer
,
2013
), pp.
263
308
.
28.
B. H.
Mauk
,
N. J.
Fox
,
S. G.
Kanekal
,
R. L.
Kessel
,
D. G.
Sibeck
, and
A.
Ukhorskiy
, “
Science objectives and rationale for the Radiation Belt Storm Probes Mission
,”
Space Sci. Rev.
179
(
1–4
),
3
27
(
2012
).
29.
T. P.
O'Brien
and
M. B.
Moldwin
, “
Empirical plasmapause models from magnetic indices
,”
Geophys. Res. Lett.
30
(
4
),
1152
, https://doi.org/10.1029/2002GL016007 (
2003
).
30.
B.
Ni
,
Z.
Zou
,
X.
Gu
,
C.
Zhou
,
R. M.
Thorne
,
J.
Bortnik
,
R.
Shi
,
Z.
Zhao
,
D. N.
Baker
,
S. G.
Kanekal
,
H. E.
Spence
,
G. D.
Reeves
, and
X.
Li
, “
Variability of the pitch angle distribution of radiation belt ultrarelativistic electrons during and following intense geomagnetic storms: Van Allen Probes observations
,”
J. Geophys. Res.
120
(
6
),
4863
4876
, https://doi.org/10.1002/2015JA021065 (
2015
).
31.
R.
Shi
,
D.
Summers
,
B.
Ni
,
J. F.
Fennell
,
J. B.
Blake
,
H. E.
Spence
, and
G. D.
Reeves
, “
Survey of radiation belt energetic electron pitch angle distributions based on the Van Allen Probes MagEIS measurements
,”
J. Geophys. Res.
121
(
2
),
1078
1090
, https://doi.org/10.1002/2015JA021724 (
2016
).
32.
J. F.
Carbary
,
D. G.
Mitchell
,
C.
Paranicas
,
E. C.
Roelof
,
S. M.
Krimigis
,
N.
Krupp
,
K.
Khurana
, and
M.
Dougherty
, “
Pitch angle distributions of energetic electrons at Saturn
,”
J. Geophys. Res.
116
(
A1
),
A01216
, https://doi.org/10.1029/2010JA015987 (
2011
).
33.
B.
Ni
,
Z.
Zou
,
X.
Li
,
J.
Bortnik
,
L.
Xie
, and
X.
Gu
, “
Occurrence characteristics of outer zone relativistic electron butterfly distribution: A survey of Van Allen Probes REPT measurements
,”
Geophys. Res. Lett.
43
(
11
),
5644
5652
, https://doi.org/10.1002/2016GL069350 (
2016
).
You do not currently have access to this content.