The development of low-permeability and tight oil reservoirs is challenged by insufficient natural energy and rapid production decline. Fracturing-flooding is a technique that relies on high-pressure and large-volume fluid injection to replenish reservoir energy, making it a significant method for rapidly boosting formation energy. To evaluate the energy replenishment effect of fracturing-flooding technology in low-permeability and tight reservoirs, this study proposes a semi-analytical method for quick calculation. This approach employs dimensionless simplification, Pedrosa's substitution, Laplace transformation, and Stehfest inversion methods to derive pressure solutions for both the stimulation region and the external matrix region, each with varying flow capacities. The average formation pressure (AFP) of the reservoir is determined using the area-weighted average method, and numerical verification is performed using a commercial simulator. A case study from the Binnan area, along with a sensitivity analysis, demonstrates that after 30 days of fracturing-flooding, the AFP of the reservoir increases to 46.97 MPa, the corresponding reservoir pressure coefficient rises from 1.2 to 1.68, and reservoir energy increases by 40%. The factors influencing energy replenishment are ranked as follows: reservoir thickness, injection rate, stress sensitivity coefficient, matrix permeability, stimulation region radius, and mobility ratio. This study provides theoretical guidance for optimizing fracturing-flooding development schemes in low-permeability and tight oil reservoirs and offers valuable reference for the industry.

1.
S.
Li
,
S.
Zhang
,
H.
Xing
, and
Y.
Zou
, “
CO2–brine–rock interactions altering the mineralogical, physical, and mechanical properties of carbonate-rich shale oil reservoirs
,”
Energy
256
,
124608
(
2022
).
2.
Y.
Zhang
,
S.
Li
,
X.
Dou
,
S.
Wang
,
Y.
He
, and
Q.
Feng
, “
Molecular insights into the natural gas regulating tight oil movability
,”
Energy
270
,
126895
(
2023
).
3.
M.
Manfroni
,
S. G. F.
Bukkens
, and
M.
Giampietro
, “
Securing fuel demand with unconventional oils: A metabolic perspective
,”
Energy
261
,
125256
(
2022
).
4.
Z.
Yan
,
F.
Wang
,
Y.
Liu
, and
P.
Wang
, “
A coupled matrix-fracture productivity calculation model considering low-velocity non-Darcy flow in shale reservoirs
,”
Fuel
357
,
129845
(
2024
).
5.
H.
Pang
,
X.
Huo
,
X.
Pang
,
G.
Liu
,
Q.
Ma
,
H.
Bai
,
J.
Wang
,
Y.
Zhang
,
S.
Huang
,
S.
Wu
, and
X.
Zhang
, “
Quantitative characterization of critical reservoir physical properties of tight oil charging in the third member of the Shahejie Formation in the Gaobei Slope of Nanpu Sag, Bohai Bay Basin
,”
Geoenergy Sci. Eng.
230
,
212212
(
2023
).
6.
F. I.
Syed
,
T.
Muther
,
V. P.
Van
,
A. K.
Dahaghi
, and
S.
Negahban
, “
Numerical trend analysis for factors affecting EOR performance and CO2 storage in tight oil reservoirs
,”
Fuel
316
,
123370
(
2022
).
7.
M.
Jiang
,
H.
Fang
,
Y.
Liu
,
Y.
Zhang
, and
C.
Wang
, “
On movable fluid saturation of tight sandstone and main controlling factors—case study on the Fuyu oil layer in the Da'an oilfield in the Songliao basin
,”
Energy
267
,
126476
(
2023
).
8.
X.
Wang
,
G.
Zhang
,
W.
Tang
,
D.
Wang
,
K.
Wang
,
J.
Liu
, and
D.
Du
, “
A review of commercial development of continental shale oil in China
,”
Energy Geosci.
3
(
3
),
282
289
(
2022
).
9.
W.-L.
Kang
,
B.-B.
Zhou
,
M.
Issakhov
, and
M.
Gabdullin
, “
Advances in enhanced oil recovery technologies for low permeability reservoirs
,”
Pet. Sci.
19
(
4
),
1622
1640
(
2022
).
10.
X.
Zhou
,
J.
Wei
,
J.
Zhao
,
X.
Zhang
,
X.
Fu
,
S.
Shamil
,
G.
Abdumalik
,
Y.
Chen
, and
J.
Wang
, “
Study on pore structure and permeability sensitivity of tight oil reservoirs
,”
Energy
288
,
129632
(
2024
).
11.
L.
Sun
,
C.
Zou
,
A.
Jia
,
Y.
Wei
,
R.
Zhu
,
S.
Wu
, and
Z.
Guo
, “
Development characteristics and orientation of tight oil and gas in China
,”
Pet. Explor. Dev.
46
(
6
),
1073
1087
(
2019
).
12.
P.
Liu
,
X.
Zhang
,
M.
Hao
,
J.
Liu
, and
Z.
Yuan
, “
Parameter optimization of gas alternative water for CO2 flooding in low permeability hydrocarbon reservoirs
,”
J. Renewable Sustainable Energy
8
(
3
),
035901
(
2016
).
13.
Y.
Shi
,
B.
Wu
,
H.
Wang
,
Y.
Li
,
Z.
Liu
,
C.
Xu
,
J.
Qin
,
Y.
Li
,
Z.
Song
, and
H.
Liu
, “
Insights into CO2 huff-n-puff mechanisms from laboratory experiment and single-well pilot test in the Lucaogou tight oil reservoir, Jimsar sag, China
,”
Geoenergy Sci. Eng.
232
,
212456
(
2024
).
14.
H.
Zheng
,
R.
Liao
,
N.
Cheng
, and
S.
Shi
, “
Microscopic mechanism of fracturing fluid imbibition in stimulated tight oil reservoir
,”
J. Pet. Sci. Eng.
202
,
108533
(
2021
).
15.
X.
Li
,
Z.
Yang
,
S.
Li
,
W.
Huang
,
J.
Zhan
, and
W.
Lin
, “
Reservoir characteristics and effective development technology in typical low-permeability to ultralow-permeability reservoirs of China National Petroleum Corporation
,”
Energy Explor. Exploit.
39
(
5
),
1713
1726
(
2021
).
16.
X.
Ma
,
H.
Li
,
H.
Luo
,
S.
Nie
,
S.
Gao
,
Q.
Zhang
,
F.
Yuan
, and
W.
Ai
, “
Research on well selection method for high-pressure water injection in fractured-vuggy carbonate reservoirs in Tahe oilfield
,”
J. Pet. Sci. Eng.
214
,
110477
(
2022
).
17.
X.
Wang
,
H.
Dang
, and
T.
Gao
, “
Method of moderate water injection and its application in ultra-low permeability oil reservoirs of Yanchang oilfield, NW China
,”
Pet. Explor. Dev.
45
(
6
),
1094
1102
(
2018
).
18.
Y.
Liu
,
F.
Wang
,
Y.
Wang
,
B.
Li
,
D.
Zhang
,
G.
Yang
,
J.
Zhi
,
S.
Sun
,
X.
Wang
,
Q.
Deng
, and
H.
Xu
, “
The mechanism of hydraulic fracturing assisted oil displacement to enhance oil recovery in low and medium permeability reservoirs
,”
Pet. Explor. Dev.
49
(
4
),
864
873
(
2022
).
19.
G.
Jianchun
,
M.
Li
, and
L.
Cong
, “
Progress and development directions of fracturing flooding technology for tight reservoirs in China
,”
Acta Pet. Sin.
43
(
12
),
1788
1797
(
2022
).
20.
L.
Wang
and
L.
Wei
, “
Study on advanced water injection time in low permeability reservoir
,”
Energy Power Eng.
3
(
2
),
194
197
(
2011
).
21.
C.
Nwokolo
, “
Application of novel techniques to fractured injection diagnostics in waterflood developments
,” in
SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria
(
OnePetro
,
2013
).
22.
Y.
Wang
,
S.
Cheng
,
N.
Feng
,
J.
Xu
,
J.
Qin
,
Y.
He
, and
H.
Yu
, “
Semi-analytical modeling for water injection well in tight reservoir considering the variation of waterflood - Induced fracture properties – Case studies in Changqing Oilfield, China
,”
J. Pet. Sci. Eng.
159
,
740
753
(
2017
).
23.
Y.
Wang
,
S.
Cheng
,
N.
Feng
,
Y.
He
, and
H.
Yu
, “
The physical process and pressure-transient analysis considering fractures excessive extension in water injection wells
,”
J. Pet. Sci. Eng.
151
,
439
454
(
2017
).
24.
Y.
Wang
,
S.
Cheng
,
K.
Zhang
, and
L. F.
Ayala
, “
Investigation on the transient pressure response of water injector coupling the dynamic flow behaviors in the wellbore, waterflood-induced fracture and reservoir: Semi-analytical modeling and a field case
,”
Int. J. Heat Mass Transfer
130
,
668
679
(
2019
).
25.
I. N.
Ponomareva
,
D. A.
Martyushev
, and
S.
Kumar Govindarajan
, “
A new approach to predict the formation pressure using multiple regression analysis: Case study from the Sukharev oil field reservoir – Russia
,”
J. King Saud Univ. - Eng. Sci.
(in press) (
2022
).
26.
Y.
Xie
,
Y.
He
,
Y.
Hu
, and
Y.
Jiang
, “
Study on productivity prediction of multi-stage fractured horizontal well in low-permeability reservoir based on finite element method
,”
Transp. Porous Med.
141
(
3
),
629
648
(
2022
).
27.
E.
Mukhina
,
A.
Cheremisin
,
L.
Khakimova
,
A.
Garipova
,
E.
Dvoretskaya
,
M.
Zvada
,
D.
Kalacheva
,
K.
Prochukhan
,
A.
Kasyanenko
, and
A.
Cheremisin
, “
Enhanced oil recovery method selection for shale oil based on numerical simulations
,”
ACS Omega
6
(
37
),
23731
23741
(
2021
).
28.
W.
Ozowe
,
S.
Zheng
, and
M.
Sharma
, “
Selection of hydrocarbon gas for huff-n-puff IOR in shale oil reservoirs
,”
J. Pet. Sci. Eng.
195
,
107683
(
2020
).
29.
H.
Chu
,
X.
Liao
,
Z.
Chen
,
X.
Zhao
,
W.
Liu
, and
P.
Dong
, “
Transient pressure analysis of a horizontal well with multiple, arbitrarily shaped horizontal fractures
,”
J. Pet. Sci. Eng.
180
,
631
642
(
2019
).
30.
H.
Chu
,
Z.
Chen
,
X.
Liao
,
X.
Zhao
, and
W. J.
Lee
, “
Pressure transient analysis of a multi-horizontal-well pad by a semi-analytical model: Methodology and case study
,”
J. Pet. Sci. Eng.
208
,
109538
(
2022
).
31.
Y.
Liu
,
Y.
Zhu
,
W.
Zhu
,
H.
Liao
, and
D.
Kong
, “
Investigating optimal development approaches via bottom hole pressure control in stress-sensitive tight oil reservoirs
,”
Phys. Fluids
36
(
5
),
056605
(
2024
).
32.
W.
Zhu
,
Y.
Liu
,
Z.
Li
,
M.
Yue
, and
D.
Kong
, “
Study on pressure propagation in tight oil reservoirs with stimulated reservoir volume development
,”
ACS Omega
6
(
4
),
2589
2600
(
2021
).
33.
O. A.
Pedrosa
, “
Pressure transient response in stress-sensitive formations
,” in
SPE California Regional Meeting
(
OnePetro
,
1986
).
34.
H.
Wang
,
X.
Liao
,
H.
Ye
,
X.
Zhao
,
C.
Liao
,
X.
Chen
,
D.
Li
, and
Y.
Li
, “
The performance evaluation of old well after SRV in Ordos basin tight oil reservoir
,” in
SPE Energy Resources Conference, Port of Spain, Trinidad and Tobago
(
OnePetro
,
2014
).
35.
Z.
Chen
,
X.
Liao
,
X.
Zhao
,
S.
Lyu
, and
L.
Zhu
, “
A comprehensive productivity equation for multiple fractured vertical wells with non-linear effects under steady-state flow
,”
J. Pet. Sci. Eng.
149
,
9
24
(
2017
).
36.
H.
Stehfest
, “
Algorithm 368: Numerical inversion of Laplace transforms [D5]
,”
Commun. ACM
13
(
1
),
47
49
(
1970
).
37.
D.
Chen
,
X.
Pang
,
Z.
Jiang
,
J.
Zeng
,
N.
Qiu
, and
M.
Li
, “
Reservoir characteristics and their effects on hydrocarbon accumulation in lacustrine turbidites in the Jiyang Super-depression, Bohai Bay Basin, China
,”
Mar. Pet. Geol.
26
(
2
),
149
162
(
2009
).
38.
X.
Zuo
,
C.
Li
,
J.
Zhang
,
G.
Ma
, and
P.
Chen
, “
Geochemical characteristics and depositional environment of the Shahejie Formation in the Binnan Oilfield, China
,”
J. Geophys. Eng.
17
(
3
),
539
551
(
2020
).
39.
J.
Wang
,
Z.
Jiang
,
Y.
Zhang
,
X.
Wei
,
H.
Wang
, and
S.
Liu
, “
Quantitative evaluation of the reservoir potential and controlling factors of semi-deep lacustrine tempestites in the Eocene Lijin Sag of the Bohai Bay Basin, East China
,”
Mar. Pet. Geol.
77
,
262
279
(
2016
).
40.
W.
Yu
,
T.
Zhang
,
S.
Du
, and
K.
Sepehrnoori
, “
Numerical study of the effect of uneven proppant distribution between multiple fractures on shale gas well performance
,”
Fuel
142
,
189
198
(
2015
).
41.
Y.
Wang
,
X.
Wang
,
Y.
Xing
,
J.
Xue
, and
D.
Wang
, “
Three-dimensional numerical simulation of enhancing shale gas desorption by electrical heating with horizontal wells
,”
J. Nat. Gas Sci. Eng.
38
,
94
106
(
2017
).
You do not currently have access to this content.