We present a numerical simulation of a two-phase rotating detonation fueled by liquid ethanol and pre-heated air in a two-dimensional rotating detonation combustor. The study aims to understand the structure and shock interactions of the two-phase rotating detonation wave (RDW) using a two-way coupled Eulerian–Lagrangian framework. Initially, the flow field is ignited with a gaseous rotating detonation, followed by the injection of liquid ethanol and pre-heated air at near-stoichiometric and fuel-lean conditions. Observations reveal incomplete evaporation of the newly injected liquid droplets, which affects the propagation of the initial gaseous RDW and leads to its decoupling. Subsequently, a two-phase RDW is re-initiated. Different types of shock waves are identified in the unsteady flow field, and their interactions and contribution to the re-initiation of the rotating detonation are discussed. An analysis of the established two-phase rotating detonation elucidates mechanisms underlying droplet evaporation and RDW propagation, highlighting the roles of incident shocks, transverse waves, and Mach stems. Additionally, we investigate the two-phase RDW under the fuel-lean condition, where the excessive presence of air mixing with unburned ethanol vapor can cause pre-ignition, leading to a chaotic rotating detonation field. The existence of reversed shock waves and ongoing collisions with the RDW can gradually reduce its intensity, induce fluctuations in the propagation velocity of the two-phase RDW, and ultimately lead to quenching.

1.
P.
Wolański
, “
Detonative propulsion
,”
Proc. Combust. Inst.
34
,
125
(
2013
).
2.
J. Z.
Ma
,
M. Y.
Luan
,
Z. J.
Xia
,
J. P.
Wang
,
S. J.
Zhang
,
S. B.
Yao
, and
B.
Wang
, “
Recent progress, development trends, and consideration of continuous detonation engines
,”
AIAA J.
58
,
4976
(
2020
).
3.
Q.
Xie
,
Z.
Ji
,
H.
Wen
,
Z.
Ren
,
P.
Wolanski
, and
B.
Wang
, “
Review on the rotating detonation engine and it's typical problems
,”
Trans. Aerosp. Res.
2020
,
107
.
4.
V.
Raman
,
S.
Prakash
, and
M.
Gamba
, “
Nonidealities in rotating detonation engines
,”
Annu. Rev. Fluid Mech.
55
,
639
(
2023
).
5.
F. A.
Bykovskii
,
S. A.
Zhdan
, and
E. F.
Vedernikov
, “
Continuous spin detonations
,”
J. Propul. Power
22
,
1204
(
2006
).
6.
M. L.
Fotia
,
J.
Hoke
, and
F.
Schauer
, “
Experimental performance scaling of rotating detonation engines operated on gaseous fuels
,”
J. Propul. Power
33
,
1187
(
2017
).
7.
P.
Pal
,
G.
Kumar
,
S. A.
Drennan
,
B. A.
Rankin
, and
S.
Som
, “
Multidimensional numerical modeling of combustion dynamics in a non-premixed rotating detonation engine with adaptive mesh refinement
,”
J. Energy Resour. Technol.
143
,
112308
(
2021
).
8.
N. N.
Smirnov
,
V. F.
Nikitin
,
L. I.
Stamov
,
E. V.
Mikhalchenko
, and
V. V.
Tyurenkova
, “
Three-dimensional modeling of rotating detonation in a ramjet engine
,”
Acta Astronaut.
163
,
168
(
2019
).
9.
Y.
Huang
,
H.
Xia
,
X.
Chen
,
Z.
Luan
, and
Y.
You
, “
Shock dynamics and expansion characteristics of an aerospike nozzle and its interaction with the rotating detonation combustor
,”
Aerosp. Sci. Technol.
117
,
106969
(
2021
).
10.
T.
Sato
and
V.
Raman
, “
Detonation structure in ethylene/air-based non-premixed rotating detonation engine
,”
J. Propul. Power
36
,
752
(
2020
).
11.
P.
Pal
,
C.
Xu
,
G.
Kumar
,
S. A.
Drennan
,
B. A.
Rankin
, and
S.
Som
, “
Large-eddy simulations and mode analysis of ethylene/air combustion in a non-premixed rotating detonation engine
,” AIAA Paper No. 2020-3876 (
2020
).
12.
S.
Prakash
,
V.
Raman
,
C. F.
Lietz
,
W. A.
Hargus
, and
S. A.
Schumaker
, “
Numerical simulation of a methane-oxygen rotating detonation rocket engine
,”
Proc. Combust. Inst.
38
,
3777
(
2021
).
13.
P.
Pal
,
S.
Demir
, and
S.
Som
, “
Numerical analysis of combustion dynamics in a full-scale rotating detonation rocket engine using large eddy simulations
,”
J. Energy Resour. Technol.
145
,
021702
(
2023
).
14.
K.
Kailasanath
, “
Liquid-fueled detonations in tubes
,”
J. Propul. Power
22
,
1261
(
2006
).
15.
X.
Han
,
Y.
Wang
,
Q.
Zheng
,
Y.
Huang
,
Q.
Xiao
,
H.
Xu
,
Y.
Wu
,
W.
Feng
, and
C.
Weng
, “
Experimental study on propagation, quenching, and re-initiation characteristics of rotating detonation wave with liquid kerosene–oxygen-enriched air
,”
Exp. Therm. Fluid Sci.
148
,
110984
(
2023
).
16.
H.
Meng
,
Q.
Zheng
,
C.
Weng
,
Y.
Wu
,
W.
Feng
,
G.
Xu
, and
F.
Wang
, “
Propagation mode analysis of rotating detonation waves fueled by liquid kerosene
,”
Acta Astronaut.
187
,
248
(
2021
).
17.
Q.
Zheng
,
H.-L.
Meng
,
C.-S.
Weng
,
Y.-W.
Wu
,
W.-K.
Feng
, and
M.-L.
Wu
, “
Experimental research on the instability propagation characteristics of liquid kerosene rotating detonation wave
,”
Defence Technol.
16
,
1106
(
2020
).
18.
F. A.
Bykovskii
,
S. A.
Zhdan
, and
E. F.
Vedernikov
, “
Continuous detonation of the liquid kerosene—air mixture with addition of hydrogen or syngas
,”
Combust. Explos. Shock Waves
55
,
589
(
2019
).
19.
J.
Kindracki
,
K.
Wacko
,
P.
Woźniak
,
S.
Siatkowski
, and
Ł.
Mężyk
, “
Influence of gaseous hydrogen addition on initiation of rotating detonation in liquid fuel–air mixtures
,”
Energies
13
,
5101
(
2020
).
20.
X.
Huang
and
Z.
Lin
, “
Analysis of coupled-waves structure and propagation characteristics in hydrogen-assisted kerosene-air two-phase rotating detonation wave
,”
Int. J. Hydrogen Energy
47
,
4868
(
2022
).
21.
J.
Li
,
J.
Yu
,
J.
Li
,
Y.
Lei
,
S.
Yao
, and
W.
Zhang
, “
Investigation of hydrogen-enriched kerosene-fueled rotating detonation engine with multi-column film cooling
,”
Phys. Fluids
36
,
016138
(
2024
).
22.
Z.
Ren
and
L.
Zheng
, “
Numerical study on rotating detonation stability in two-phase kerosene-air mixture
,”
Combust. Flame
231
,
111484
(
2021
).
23.
Y.
Ma
,
S.
Zhou
,
H.
Ma
,
G.
Ge
,
D.
Yu
,
G.
Zou
,
Z.
Liang
, and
T.
Zhang
, “
Experimental investigation on propagation characteristics of liquid-fuel/preheated-air rotating detonation wave
,”
Int. J. Hydrogen Energy
47
,
24080
(
2022
).
24.
X.
Li
,
J.
Li
,
Q.
Qin
,
W.
Jin
, and
L.
Yuan
, “
Experimental study on detonation characteristics of liquid kerosene/air rotating detonation engine
,”
Acta Astronaut.
215
,
124
(
2024
).
25.
X.-J.
He
,
X.-P.
Gong
,
J.-P.
Wang
, and
J. Z.
Ma
, “
Investigation of the total pressure gain in rotating detonation combustors with dilution holes
,”
Phys. Fluids
36
,
045103
(
2024
).
26.
J.
Zhou
,
F.
Song
,
Y.
Wu
,
S.
Xu
,
X.
Yang
,
P.
Cheng
, and
Y.
Li
, “
Investigation of pressure gain characteristics for kerosene-hot air RDE
,”
Combust. Flame
247
,
112503
(
2023
).
27.
J.
Han
,
Q.
Bai
,
S.
Zhang
, and
C.
Weng
, “
Experimental study on propagation mode of rotating detonation wave with cracked kerosene gas and ambient temperature air
,”
Phys. Fluids
34
,
075127
(
2022
).
28.
M.
Salvadori
,
A.
Panchal
, and
S.
Menon
, “
Simulation of wave mode switching in a rotating detonation engine with gaseous and liquid fuel
,”
Aerosp. Sci. Technol.
147
,
109008
(
2024
).
29.
S.
Prakash
,
R.
Bielawski
,
V.
Raman
,
K.
Ahmed
, and
J.
Bennewitz
, “
Three-dimensional numerical simulations of a liquid RP-2/O2 based rotating detonation engine
,”
Combust. Flame
259
,
113097
(
2024
).
30.
X.
Han
,
Y.
Huang
,
Q.
Zheng
,
Q.
Xiao
,
H.
Xu
,
F.
Wang
,
Y.
Wu
,
W.
Feng
, and
C.
Weng
, “
Study of the characteristics and combustion efficiency of liquid kerosene/oxygen-enriched air rotating detonation wave with different modes
,”
Fuel
355
,
129424
(
2024
).
31.
M. H.
Zhao
,
K.
Wang
,
Y. Y.
Zhu
,
Z. C.
Wang
,
Y.
Yan
,
Y. J.
Wang
, and
W.
Fan
, “
Effects of the exit convergent ratio on the propagation behavior of rotating detonations utilizing liquid kerosene
,”
Acta Astronaut.
193
,
35
(
2022
).
32.
M.
Zhao
and
H.
Zhang
, “
Rotating detonative combustion in partially pre-vaporized dilute n-heptane sprays: Droplet size and equivalence ratio effects
,”
Fuel
304
,
121481
(
2021
).
33.
Q.
Meng
,
N.
Zhao
, and
H.
Zhang
, “
On the distributions of fuel droplets and in situ vapor in rotating detonation combustion with prevaporized n-heptane sprays
,”
Phys. Fluids
33
,
043307
(
2021
).
34.
K.
Yoneyama
,
K.
Ishihara
,
S.
Ito
,
H.
Watanabe
,
N.
Itouyama
,
A.
Kawasaki
,
K.
Matsuoka
,
J.
Kasahara
,
A.
Matsuo
, and
I.
Funaki
, “
Experimental clarification on detonation phenomena of liquid ethanol rotating detonation combustor
,” AIAA Paper No. 2022-1454,
2022
.
35.
T.
Sato
,
K.
Ishihara
,
S.
Ito
,
N.
Itouyama
,
A.
Kawasaki
,
K.
Matsuoka
,
J.
Kasahara
,
A.
Matsuo
, and
I.
Funaki
, “
Experimental research on internal flow structure of cylindrical rotating detonation engine using ethanol
,” AIAA Paper No. 2023-2563,
2023
.
36.
T.
Sato
,
K.
Nakata
,
K.
Ishihara
,
N.
Itouyama
,
K.
Matsuoka
,
J.
Kasahara
,
A.
Kawasaki
,
D.
Nakata
,
H.
Eguchi
,
M.
Uchiumi
,
A.
Matsuo
, and
I.
Funaki
, “
Combustion structure of a cylindrical rotating detonation engine with liquid ethanol and nitrous oxide
,”
Combust. Flame
264
,
113443
(
2024
).
37.
H.
Kadosh
and
D.
Michaels
, “
Experimental study of pulse detonation engine with liquid ethanol and oxygen mixtures
,”
Shock Waves
32
,
353
(
2022
).
38.
S.
Yao
,
X.
Tang
, and
W.
Zhang
, “
Structure of a heterogeneous two-phase rotating detonation wave with ethanol–hydrogen–air mixture
,”
Phys. Fluids
35
,
031712
(
2023
).
39.
J.
Li
,
Y.
Lei
,
S.
Yao
,
J.
Yu
,
J.
Li
, and
W.
Zhang
, “
Investigation of multi-stage evaporation and wave multiplicity of two-phase rotating detonation waves fueled by ethanol
,”
Acta Astronaut.
213
,
418
(
2023
).
40.
S.
Yao
,
C.
Guo
, and
W.
Zhang
, “
Effects of droplet evaporation on the flow field of hydrogen-enhanced rotating detonation engines with liquid kerosene
,”
Int. J. Hydrogen Energy
48
,
33335
(
2023
).
41.
Q.
Meng
,
M.
Zhao
,
H.
Zheng
, and
H.
Zhang
, “
Eulerian-Lagrangian modelling of rotating detonative combustion in partially pre-vaporized n-heptane sprays with hydrogen addition
,”
Fuel
290
,
119808
(
2021
).
42.
S.
Subramaniam
, “
Lagrangian-Eulerian methods for multiphase flows
,”
Prog. Energy Combust. Sci.
39
,
215
(
2013
).
43.
M.
Salvadori
,
A.
Panchal
, and
S.
Menon
, “
Numerical study of spray combustion effects on detonation propagation
,”
AIAA J.
61
,
1
(
2023
).
44.
H.
Wen
,
W.
Fan
,
S.
Xu
, and
B.
Wang
, “
Numerical study on droplet evaporation and propagation stability in normal-temperature two-phase rotating detonation system
,”
Aerosp. Sci. Technol.
138
,
108324
(
2023
).
45.
K. K.
Kuo
and
R.
Acharya
,
Fundamentals of Turbulent and Multiphase Combustion
(
John Wiley & Sons
,
2012
).
46.
B.
Abramzon
and
W. A.
Sirignano
, “
Droplet vaporization model for spray combustion calculations
,”
Int. J. Heat Mass Transfer
32
,
1605
(
1989
).
47.
W. E.
Ranz
and
W. R.
Marshall
, “
Evaporation from drops: Part 1
,”
Chem. Eng. Prog.
48
,
141
(
1952
).
48.
W. E.
Ranz
and
W. R.
Marshall
, “
Evaporation from drops: Part 2
,”
Chem. Eng. Prog.
48
,
173
(
1952
).
49.
Z.
Huang
,
M.
Zhao
,
Y.
Xu
,
G.
Li
, and
H.
Zhang
, “
Eulerian-Lagrangian modelling of detonative combustion in two-phase gas-droplet mixtures with OpenFOAM: Validations and verifications
,”
Fuel
286
,
119402
(
2021
).
50.
S.
Jin
,
H.
Zhang
,
N.
Zhao
, and
H.
Zheng
, “
Simulations of rotating detonation combustion with in-situ evaporating bi-disperse n-heptane sprays
,”
Fuel
314
,
123087
(
2022
).
51.
H. G.
Weller
,
G.
Tabor
,
H.
Jasak
, and
C.
Fureby
, “
A tensorial approach to computational continuum mechanics using object-oriented techniques
,”
Comput. Phys.
12
,
620
(
1998
).
52.
X.-J.
He
,
X.-Y.
Liu
, and
J.-P.
Wang
, “
Numerical study of the mechanisms of the longitudinal pulsed detonation in two-dimensional rotating detonation combustors
,”
Phys. Fluids
35
,
036123
(
2023
).
53.
C. J.
Greenshields
,
H. G.
Weller
,
L.
Gasparini
, and
J. M.
Reese
, “
Implementation of semi‐discrete, non‐staggered central schemes in a colocated, polyhedral, finite volume framework, for high‐speed viscous flows
,”
Numer. Methods Fluids
63
,
1
(
2010
).
54.
W.
Yao
,
J.
Wang
,
Y.
Lu
,
X.
Li
, and
X.
Fan
, “
Full-scale detached eddy simulation of kerosene fueled scramjet combustor based on skeletal mechanism
,” AIAA Paper No. 2015-3579 (
2015
).
55.
A.
Kurganov
and
E.
Tadmor
, “
New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations
,”
J. Comput. Phys.
160
,
241
(
2000
).
56.
C. K.
Westbrook
and
F. L.
Dryer
, “
Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames
,”
Combust. Sci. Technol.
27
,
31
(
1981
).
57.
B.
Franzelli
,
E.
Riber
,
M.
Sanjosé
, and
T.
Poinsot
, “
A two-step chemical scheme for kerosene-air premixed flames
,”
Combust. Flame
157
,
1364
(
2010
).
58.
J.
Kindracki
, “
Experimental research on rotating detonation in liquid fuel-gaseous air mixtures
,”
Aerosp. Sci. Technol.
43
,
445
(
2015
).
59.
A. P.
Pinheiro
and
J. M.
Vedovoto
, “
Evaluation of droplet evaporation models and the incorporation of natural convection effects
,”
Flow. Turbul. Combust.
102
,
537
(
2019
).
60.
J.
Kersey
,
E.
Loth
, and
D.
Lankford
, “
Effect of evaporating droplets on shock waves
,”
AIAA J.
48
,
1975
(
2010
).
61.
K. A.
Heufer
and
H.
Olivier
, “
Determination of ignition delay times of different hydrocarbons in a new high pressure shock tube
,”
Shock Waves
20
,
307
(
2010
).
62.
D.
Nativel
,
P.
Niegemann
,
J.
Herzler
,
M.
Fikri
, and
C.
Schulz
, “
Ethanol ignition in a high-pressure shock tube: Ignition delay time and high-repetition-rate imaging measurements
,”
Proc. Combust. Inst.
38
,
901
(
2021
).
You do not currently have access to this content.