Direct numerical simulations (DNS) are one of the main ab initio tools to study turbulent flows. However, due to their considerable computational cost, DNS are primarily restricted to canonical flows at moderate Reynolds numbers, in which turbulence is isolated from the realistic, large-scale flow dynamics. In contrast, lower fidelity techniques, such as large eddy simulations (LES), are employed for modeling real-life systems. Such approaches rely on closure models that make multiple assumptions, including turbulent equilibrium, small-scale universality, etc., which require prior knowledge of the flow and can be violated. We propose a method, which couples a lower-fidelity, unresolved, time-dependent calculation of an entire system (LES) with an embedded small eddy simulation (SES) that provides a high-fidelity, fully resolved solution in a sub-region of interest of the LES. Such coupling is achieved by continuous replacement of the large SES scales with a low-pass filtered LES velocity field. The method is formulated in physical space, with no assumptions of equilibrium, small-scale structure, and boundary conditions. A priori tests of both steady and unsteady homogeneous, isotropic turbulences are used to demonstrate the method's accuracy in recovering turbulence properties, including spectra, probability density functions of the intermittent quantities, and sub-grid dissipation. Finally, SES is compared with two alternative approaches: one embedding a high-resolution region through static mesh refinement and a generalization of the traditional volumetric spectral forcing. Unlike these methods, SES is shown to achieve DNS-level accuracy at a fraction of the cost of the full DNS, thus opening the possibility to study high-Re flows.

1.
S.
Ghosal
,
M.
Rogers
, and
A.
Wray
,
The Turbulent Life of Phytoplankton
(
Center for Turbulence Research
,
2000
), pp.
31
45
.
2.
S. B.
Sadykova
,
A. M.
Dostiyarov
,
M. G.
Zhumagulov
, and
N. R.
Kartjanov
, “
Influence of turbulence on the efficiency and reliability of combustion chamber of the gas turbine
,”
Therm. Sci.
25
,
4321
4332
(
2021
).
3.
E. A.
D'Asaro
, “
Turbulence in the upper-ocean mixed layer
,”
Annu. Rev. Mar. Sci.
6
,
101
115
(
2014
).
4.
M.-M.
Mac Low
and
R. S.
Klessen
, “
Control of star formation by supersonic turbulence
,”
Rev. Mod. Phys.
76
,
125
(
2004
).
5.
A. Y.
Poludnenko
,
J.
Chambers
,
K.
Ahmed
,
V. N.
Gamezo
, and
B. D.
Taylor
, “
A unified mechanism for unconfined deflagration-to-detonation transition in terrestrial chemical systems and type Ia supernovae
,”
Science
366
,
eaau7365
(
2019
).
6.
J.
Jimenez
and
R. D.
Moser
, “
Large-eddy simulations: Where are we and what can we expect?
,”
AIAA J.
38
,
605
612
(
2000
).
7.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2001
).
8.
P.
Sagaut
,
Large Eddy Simulation for Incompressible Flows: An Introduction
(
Springer Science & Business Media
,
2005
).
9.
H.
Tennekes
and
J. L.
Lumley
,
A First Course in Turbulence
(
MIT Press
,
1972
).
10.
P. R.
Spalart
, “
Detached-eddy simulation
,”
Annu. Rev. Fluid Mech.
41
,
181
202
(
2009
).
11.
Y.
Zhiyin
, “
Large-eddy simulation: Past, present and the future
,”
Chin. J. Aeronaut.
28
,
11
24
(
2015
).
12.
D.
Corson
,
R.
Jaiman
, and
F.
Shakib
, “
Industrial application of RANS modelling: Capabilities and needs
,”
Int. J. Comput. Fluid Dyn.
23
,
337
347
(
2009
).
13.
P.
Moin
and
K.
Mahesh
, “
Direct numerical simulation: A tool in turbulence research
,”
Annu. Rev. Fluid Mech.
30
,
539
578
(
1998
).
14.
M.
Quadrio
,
B.
Frohnapfel
, and
Y.
Hasegawa
, “
Does the choice of the forcing term affect flow statistics in DNS of turbulent channel flow?
,”
Eur. J. Mech.-B/Fluids
55
,
286
293
(
2016
).
15.
R.
Dhariwal
and
S. L.
Rani
, “
Forcing in DNS of stationary isotropic turbulence and its effects on the closure of diffusion current in the PDF kinetic equation for high-inertia particle pairs
,”
Int. J. Multiphase Flow
155
,
104187
(
2022
).
16.
R.
Das
and
S. S.
Girimaji
, “
The effect of large-scale forcing on small-scale dynamics of incompressible turbulence
,”
J. Fluid Mech.
941
,
A34
(
2022
).
17.
C.
Federrath
,
J.
Roman-Duval
,
R. S.
Klessen
,
W.
Schmidt
, and
M.-M.
Mac Low
, “
Comparing the statistics of interstellar turbulence in simulations and observations—Solenoidal versus compressive turbulence forcing
,”
Astron. Astrophys.
512
,
A81
(
2010
).
18.
J. P.
John
,
D. A.
Donzis
, and
K. R.
Sreenivasan
, “
Solenoidal scaling laws for compressible mixing
,”
Phys. Rev. Lett.
123
,
224501
(
2019
).
19.
V.
Eswaran
and
S. B.
Pope
, “
An examination of forcing in direct numerical simulations of turbulence
,”
Comput. Fluids
16
,
257
278
(
1988
).
20.
M. N.
Lemaster
and
J. M.
Stone
, “
Dissipation and heating in supersonic hydrodynamic and MHD turbulence
,”
Astrophys. J.
691
,
1092
(
2009
).
21.
C.
Seror
,
P.
Sagaut
,
C.
Bailly
, and
D.
Juvé
, “
On the radiated noise computed by large-eddy simulation
,”
Phys. Fluids
13
,
476
487
(
2001
).
22.
E. D.
Siggia
and
G.
Patterson
, “
Intermittency effects in a numerical simulation of stationary three-dimensional turbulence
,”
J. Fluid Mech.
86
,
567
592
(
1978
).
23.
D.
Carati
,
S.
Ghosal
, and
P.
Moin
, “
On the representation of backscatter in dynamic localization models
,”
Phys. Fluids
7
,
606
616
(
1995
).
24.
A.
Witkowska
,
D.
Juvé
, and
J. G.
Brasseur
, “
Numerical study of noise from isotropic turbulence
,”
J. Comp. Acous.
05
,
317
336
(
1997
).
25.
T. S.
Lundgren
, “
Linearly forced isotropic turbulence
,”
Annual Research Briefs
(
Center for Turbulence Research
,
Stanford
,
2003
), pp.
461
473
.
26.
C.
Rosales
and
C.
Meneveau
, “
Linear forcing in numerical simulations of isotropic turbulence: Physical space implementations and convergence properties
,”
Phys. Fluids
17
,
095106
(
2005
).
27.
M. R.
Petersen
and
D.
Livescu
, “
Forcing for statistically stationary compressible isotropic turbulence
,”
Phys. Fluids
22
,
116101
(
2010
).
28.
S.
Stanley
,
S.
Sarkar
, and
J.
Mellado
, “
A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation
,”
J. Fluid Mech.
450
,
377
407
(
2002
).
29.
E. R.
Hawkes
,
O.
Chatakonda
,
H.
Kolla
,
A. R.
Kerstein
, and
J. H.
Chen
, “
A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence
,”
Combust. Flame
159
,
2690
2703
(
2012
).
30.
J. F.
Hawley
,
C. F.
Gammie
, and
S. A.
Balbus
, “
Local three-dimensional magnetohydrodynamic simulations of accretion disks
,”
Astrophys. J.
440
,
742
(
1995
).
31.
V.
Prat
,
J.
Guilet
,
M.
Viallet
, and
E.
Müller
, “
Shear mixing in stellar radiative zones-II. Robustness of numerical simulations
,”
Astron. Astrophys.
592
,
A59
(
2016
).
32.
D.
Buaria
,
E.
Bodenschatz
, and
A.
Pumir
, “
Vortex stretching and enstrophy production in high Reynolds number turbulence
,”
Phys. Rev. Fluids
5
,
104602
(
2020
).
33.
M.
Lee
and
R. D.
Moser
, “
Direct numerical simulation of turbulent channel flow up to
,”
J. Fluid Mech.
774
,
395
415
(
2015
).
34.
K. J.
Rah
,
C.
Dhandapani
, and
G.
Blanquart
, “
Derivation of a realistic forcing term to reproduce the turbulent characteristics of round jets on the centerline
,”
Phys. Rev. Fluids
3
,
084606
(
2018
).
35.
A.
Elnahhas
,
A.
Lozano-Duran
, and
P.
Moin
,
Toward a Flow-Structure-Based Wall-Modeled Large-Eddy Simulation Paradigm
(
Center for Turbulence Research
,
2020
), pp.
59
71
.
36.
J. F.
MacArt
,
J.
Sirignano
, and
J. B.
Freund
, “
Embedded training of neural-network subgrid-scale turbulence models
,”
Phys. Rev. Fluids
6
,
050502
(
2021
).
37.
J.
Sirignano
and
J. F.
MacArt
, “
Dynamic deep learning les closures: Online optimization with embedded DNS
,” arXiv:2303.02338 (
2023
).
38.
C.
Towery
,
S.
Walters
,
S.
Guzik
,
X.
Gao
, and
P.
Hamlington
, “
A scaling law for the required transition zone depth in hybrid LES-DNS
,”
J. Turbul.
21
,
722
734
(
2020
).
39.
J.
Christopher
,
S. M.
Guzik
, and
X.
Gao
, “
High-order implicit-explicit additive Runge–Kutta schemes for numerical combustion with adaptive mesh refinement
,”
Numer. Methods Fluids
94
,
1082
1110
(
2022
).
40.
K. M.
Waldron
,
J.
Paegle
, and
J. D.
Horel
, “
Sensitivity of a spectrally filtered and nudged limited-area model to outer model options
,”
Mon. Wea. Rev.
124
,
529
547
(
1996
).
41.
H.
von Storch
,
H.
Langenberg
, and
F.
Feser
, “
A spectral nudging technique for dynamical downscaling purposes
,”
Mon. Wea. Rev.
128
,
3664
3673
(
2000
).
42.
R.
Radu
,
M.
Déqué
, and
S.
Somot
, “
Spectral nudging in a spectral regional climate model
,”
Tellus A: Dyn. Meteorol. Oceanogr.
60
,
898
910
(
2008
).
43.
P. C.
Di Leoni
,
A.
Mazzino
, and
L.
Biferale
, “
Inferring flow parameters and turbulent configuration with physics-informed data assimilation and spectral nudging
,”
Phys. Rev. Fluids
3
,
104604
(
2018
).
44.
P.
Clark Di Leoni
,
A.
Mazzino
, and
L.
Biferale
, “
Synchronization to big data: Nudging the Navier-Stokes equations for data assimilation of turbulent flows
,”
Phys. Rev. X
10
,
011023
(
2020
).
45.
Y.
Hasegawa
,
N.
Onodera
,
Y.
Asahi
,
T.
Ina
,
T.
Imamura
, and
Y.
Idomura
, “
Continuous data assimilation of large eddy simulation by lattice Boltzmann method and local ensemble transform Kalman filter (LBM-LETKF)
,”
Fluid Dyn. Res.
55
,
065501
(
2023
).
46.
W. W.
Grabowski
and
P. K.
Smolarkiewicz
, “
CRCP: A cloud resolving convection parameterization for modeling the tropical convecting atmosphere
,”
Phys. D: Nonlinear Phenom.
133
,
171
178
(
1999
).
47.
W. W.
Grabowski
, “
An improved framework for superparameterization
,”
J. Atmos. Sci.
61
,
1940
1952
(
2004
).
48.
P.
Yeung
and
K.
Ravikumar
, “
Advancing understanding of turbulence through extreme-scale computation: Intermittency and simulations at large problem sizes
,”
Phys. Rev. Fluids
5
,
110517
(
2020
).
49.
A. Y.
Poludnenko
and
E. S.
Oran
, “
The interaction of high-speed turbulence with flames: Global properties and internal flame structure
,”
Combust. Flame
157
,
995
1011
(
2010
).
50.
P.
Colella
, “
Multidimensional upwind methods for hyperbolic conservation laws
,”
J. Comput. Phys.
87
,
171
200
(
1990
).
51.
J.
Saltzman
, “
An unsplit 3D upwind method for hyperbolic conservation laws
,”
J. Comput. Phys.
115
,
153
168
(
1994
).
52.
P.
Colella
and
P. R.
Woodward
, “
The piecewise parabolic method (PPM) for gas-dynamical simulations
,”
J. Comput. Phys.
54
,
174
201
(
1984
).
53.
D. A.
Donzis
and
P. K.
Yeung
, “
Resolution effects and scaling in numerical simulations of passive scalar mixing in turbulence
,”
Phys. D
239
,
1278
1287
(
2010
).
54.
S.
Jagannathan
and
D. A.
Donzis
, “
Reynolds and Mach number scaling in solenoidally-forced compressible turbulence using high-resolution direct numerical simulations
,”
J. Fluid Mech.
789
,
669
707
(
2016
).
55.
P.
Yeung
,
K.
Sreenivasan
, and
S.
Pope
, “
Effects of finite spatial and temporal resolution in direct numerical simulations of incompressible isotropic turbulence
,”
Phys. Rev. Fluids
3
,
064603
(
2018
).
56.
C.
Towery
,
A.
Poludnenko
,
J.
Urzay
,
J.
O'Brien
,
M.
Ihme
, and
P.
Hamlington
, “
Spectral kinetic energy transfer in turbulent premixed reacting flows
,”
Phys. Rev. E
93
,
053115
(
2016
).
57.
J.
O'Brien
,
C. A.
Towery
,
P. E.
Hamlington
,
M.
Ihme
,
A. Y.
Poludnenko
, and
J.
Urzay
, “
The cross-scale physical-space transfer of kinetic energy in turbulent premixed flames
,”
Proc. Combust. Inst.
36
,
1967
1975
(
2017
).
58.
C.
Towery
,
A.
Poludnenko
,
J.
Urzay
,
M.
Ihme
, and
P.
Hamlington
,
Spectral Energy Dynamics in Premixed Flames
(
Center for Turbulence Research
,
2014
), pp.
159
168
.
59.
R. W.
Daniels
,
Approximation Methods for Electronic Filter Design: With Applications to Passive, Active, and Digital Networks
(
McGraw-Hill
,
New York
,
1974
).
60.
S.
Bose
,
P.
Moin
, and
F.
Ham
,
Explicitly Filtered Large Eddy Simulation on Unstructured Grids
(
Center for Turbulence Research
,
2011
), pp.
87
96
.
61.
M.
Germano
, “
Differential filters for the large eddy numerical simulation of turbulent flows
,”
Phys. Fluids
29
,
1755
1757
(
1986
).
62.
A.
Edoh
,
N. L.
Mundis
,
A. R.
Karagozian
, and
V.
Sankaran
, “
Discrete filtering formulations for large-eddy simulations
,” in
46th AIAA Fluid Dynamics Conference
(
AIAA
,
2016
), p.
3794
.
63.
P.
Marbaix
,
H.
Gallée
,
O.
Brasseur
, and
J.-P.
van Ypersele
, “
Lateral boundary conditions in regional climate models: A detailed study of the relaxation procedure
,”
Mon. Wea. Rev.
131
,
461
479
(
2003
).
64.
J. C. P.
Campuzano
, “
Trigonometric interpolation using the discrete Fourier transform
,”
North Am. GeoGebra J.
10
,
1
13
(
2022
).
65.
A.
Zygmund
,
Trigonometric Series
, Vol.
1
(
Cambridge University Press
,
2002
).
66.
L.-P.
Wang
,
S.
Chen
,
J. G.
Brasseur
, and
J. C.
Wyngaard
, “
Examination of hypotheses in the Kolmogorov refined turbulence theory through high-resolution simulations. Part 1. Velocity field
,”
J. Fluid Mech.
309
,
113
156
(
1996
).
67.
Y.
Zhou
, “
Interacting scales and energy transfer in isotropic turbulence
,”
Phys. Fluids A: Fluid Dyn.
5
,
2511
2524
(
1993
).
68.
M.
Adams
,
P.
Colella
,
D. T.
Graves
,
J.
Johnson
,
N.
Keen
,
T. J.
Ligocki
,
D. F.
Martin
,
P.
McCorquodale
,
D.
Modiano
,
P.
Schwartz
,
T.
Sternberg
, and
B. V.
Straalen
, “
Chombo software package for AMR applications design document
” (
2021
), http://seesar.lbl.gov/ANAG/chombo/, accessed 2 September 2008.
69.
W.
Zhang
,
A.
Almgren
,
M.
Day
,
T.
Nguyen
,
J.
Shalf
, and
D.
Unat
, “
Boxlib with tiling: An adaptive mesh refinement software framework
,”
SIAM J. Sci. Comput.
38
,
S156
S172
(
2016
).
70.
M. T.
Henry de Frahan
,
J. S.
Rood
,
M. S.
Day
,
H.
Sitaraman
,
S.
Yellapantula
,
B. A.
Perry
,
R. W.
Grout
,
A.
Almgren
,
W.
Zhang
,
J. B.
Bell
et al, “
PeleC: An adaptive mesh refinement solver for compressible reacting flows
,”
Int. J. High Performance Comput. Appl.
37
,
115
131
(
2023
).
71.
M.
Vanella
,
A.
Posa
, and
E.
Balaras
, “
Adaptive mesh refinement for immersed boundary methods
,”
J. Fluids Eng.
136
,
040909
(
2014
).
72.
A.
Hay
and
M.
Visonneau
, “
Adaptive finite-volume solution of complex turbulent flows
,”
Comput. Fluids
36
,
1347
1363
(
2007
).
73.
N.
Ganesh
,
N. V.
Shende
, and
N.
Balakrishnan
, “
R-parameter: A local truncation error based adaptive framework for finite volume compressible flow solvers
,”
Comput. Fluids
38
,
1799
1822
(
2009
).
74.
T.
Plewa
,
T. J.
Linde
,
V. G.
Weirs
et al,
Adaptive Mesh Refinement, Theory and Applications
(
Springer
,
2005
).
75.
J. M.
Stone
,
T. A.
Gardiner
,
P.
Teuben
,
J. F.
Hawley
, and
J. B.
Simon
, “
Athena: A new code for astrophysical MHD
,”
Astrophys. J. Suppl. S
178
,
137
(
2008
).
76.
T. A.
Gardiner
and
J. M.
Stone
, “
An unsplit Godunov method for ideal MHD via constrained transport in three dimensions
,”
J. Comput. Phys.
227
,
4123
4141
(
2008
).
77.
P. E.
Hamlington
,
A. Y.
Poludnenko
, and
E. S.
Oran
, “
Interactions between turbulence and flames in premixed reacting flows
,”
Phys. Fluids
23
,
125111
(
2011
).
78.
P. E.
Hamlington
,
A. Y.
Poludnenko
, and
E. S.
Oran
, “
Intermittency in premixed turbulent reacting flows
,”
Phys. Fluids
24
,
075111
(
2012
).
79.
Z.
Jozefik
,
M. E.
Harvazinski
,
V.
Sankaran
,
S. S.
Dammati
,
A. Y.
Poludnenko
,
T.
Lu
,
A. R.
Kerstein
,
R.
Xu
, and
H.
Wang
, “
Modeling of high-speed, methane–air, turbulent combustion, Part I: One-dimensional turbulence modeling with comparison to DNS
,”
Combust. Flame
263
,
113379
(
2024
).
80.
R.
Xu
,
S. S.
Dammati
,
X.
Shi
,
E. S.
Genter
,
Z.
Jozefik
,
M. E.
Harvazinski
,
T.
Lu
,
A. Y.
Poludnenko
,
V.
Sankaran
,
A. R.
Kerstein
et al, “
Modeling of high-speed, methane-air, turbulent combustion, Part II: Reduced methane oxidation chemistry
,”
Combust. Flame
263
,
113380
(
2024
).
81.
A. Y.
Poludnenko
, “
Pulsating instability and self-acceleration of fast turbulent flames
,”
Phys. Fluids
27
,
014106
(
2015
).
82.
Y.
Kozak
,
S. S.
Dammati
,
L. G.
Bravo
,
P. E.
Hamlington
, and
A. Y.
Poludnenko
, “
WENO interpolation for Lagrangian particles in highly compressible flow regimes
,”
J. Comput. Phys.
402
,
109054
(
2020
).
83.
S. S.
Dammati
,
Y.
Kozak
,
C.
Rising
,
J.
Reyes
,
K. A.
Ahmed
, and
A. Y.
Poludnenko
, “
Numerical investigation of the accuracy of particle image velocimetry technique in gas-phase detonations
,”
Proc. Combust. Inst.
38
,
3671
3681
(
2021
).
84.
Y.
Kozak
,
S. S.
Dammati
,
L. G.
Bravo
,
P. E.
Hamlington
, and
A.
Poludnenko
, “
Novel Lagrangian-particle tracking method for highly compressible, turbulent, reacting flows
,” in AIAA SciTech 2019 Forum (
AIAA
,
2019
), p.
1642
.
85.
J. M.
Stone
,
K.
Tomida
,
C. J.
White
, and
K. G.
Felker
, “
The Athena++ adaptive mesh refinement framework: Design and magnetohydrodynamic solvers
,”
Astrophys. J.
249
,
4
(
2020
).
86.
J. M.
Stone
and
T.
Gardiner
, “
A simple unsplit godunov method for multidimensional MHD
,”
New Astron.
14
,
139
148
(
2009
).
87.
D.
Donzis
,
P.
Yeung
, and
K.
Sreenivasan
, “
Dissipation and enstrophy in isotropic turbulence: Resolution effects and scaling in direct numerical simulations
,”
Phys. Fluids
20
,
045108
(
2008
).
88.
A.
Tsinober
,
An Informal Conceptual Introduction to Turbulence
, Vol.
483
(
Springer
,
2009
).
89.
S.
Chen
,
K. R.
Sreenivasan
, and
M.
Nelkin
, “
Inertial range scalings of dissipation and enstrophy in isotropic turbulence
,”
Phys. Rev. Lett.
79
,
1253
(
1997
).
90.
B. W.
Zeff
,
D. D.
Lanterman
,
R.
McAllister
,
R.
Roy
,
E. J.
Kostelich
, and
D. P.
Lathrop
, “
Measuring intense rotation and dissipation in turbulent flows
,”
Nature
421
,
146
149
(
2003
).
91.
P.
Moin
,
K.
Squires
,
W.
Cabot
, and
S.
Lee
, “
A dynamic subgrid-scale model for compressible turbulence and scalar transport
,”
Phys. Fluids A: Fluid Dyn.
3
,
2746
2757
(
1991
).
92.
A.
Vreman
, “
An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications
,”
Phys. Fluids
16
,
3670
3681
(
2004
).
93.
Y.
Li
,
C.
Meneveau
,
S.
Chen
, and
G. L.
Eyink
, “
Subgrid-scale modeling of helicity and energy dissipation in helical turbulence
,”
Phys. Rev. E
74
,
026310
(
2006
).
94.
C.
Fureby
,
G.
Tabor
,
H.
Weller
, and
A.
Gosman
, “
A comparative study of subgrid scale models in homogeneous isotropic turbulence
,”
Phys. Fluids
9
,
1416
1429
(
1997
).
95.
U.
Piomelli
,
W. H.
Cabot
,
P.
Moin
, and
S.
Lee
, “
Subgrid-scale backscatter in turbulent and transitional flows
,”
Phys. Fluids A: Fluid Dyn.
3
,
1766
1771
(
1991
).
96.
C.
Leith
, “
Stochastic backscatter in a subgrid-scale model: Plane shear mixing layer
,”
Phys. Fluids A: Fluid Dyn.
2
,
297
299
(
1990
).
97.
T.
Aoyama
,
T.
Ishihara
,
Y.
Kaneda
,
M. Y. K.
Itakura
, and
A.
Uno
, “
Statistics of energy transfer in high-resolution direct numerical simulation of turbulence in a periodic box
,”
J. Phys. Soc. Jpn.
74
,
3202
3212
(
2005
).
98.
J. A.
Domaradzki
and
R. S.
Rogallo
, “
Local energy transfer and nonlocal interactions in homogeneous, isotropic turbulence
,”
Phys. Fluids A: Fluid Dyn.
2
,
413
426
(
1990
).
99.
J. A.
Domaradzki
and
D.
Carati
, “
An analysis of the energy transfer and the locality of nonlinear interactions in turbulence
,”
Phys. Fluids
19
,
085112
(
2007
).
100.
P.
Yeung
and
J. G.
Brasseur
, “
The response of isotropic turbulence to isotropic and anisotropic forcing at the large scales
,”
Phys. Fluids A: Fluid Dyn.
3
,
884
897
(
1991
).
101.
M. P.
Martin
,
U.
Piomelli
, and
G. V.
Candler
, “
Subgrid-scale models for compressible large-eddy simulations
,”
Theoret. Comput. Fluid Dyn.
13
,
361
376
(
2000
).
102.
D.
Veynante
and
L.
Vervisch
, “
Turbulent combustion modeling
,”
Prog. Energy Combust. Sci.
28
,
193
266
(
2002
).
103.
B.
Vreman
,
B.
Geurts
, and
H.
Kuerten
, “
Subgrid-modelling in LES of compressible flow
,”
Appl. Sci. Res.
54
,
191
203
(
1995
).
104.
C.
Xie
,
J.
Wang
,
H.
Li
,
M.
Wan
, and
S.
Chen
, “
A modified optimal LES model for highly compressible isotropic turbulence
,”
Phys. Fluids
30
,
065108
(
2018
).
You do not currently have access to this content.