To suppress the combustion instabilities faced in the lean premixed combustion, the impacts of swirler hub configurations on combustion instabilities under elevated pressure are investigated using large eddy simulation combined with a flamelet generation manifold model. Good agreement between the numerical predictions and experimental data is achieved. The flow fields of the combustors with three distinct swirler configurations are simulated: prototype, swirler with lobes on the hub of pilot stage, and with lobes on the hub of the first main stage. Furthermore, dynamic mode decomposition (DMD) is used to extract the dynamic characteristics, and a flame transfer function (FTF) is employed to characterize the fluctuation characteristics. The results show that the prototype combustor demonstrates a coupled fluctuation between flow and heat release. Influenced by the precessing vortex core (PVC), the flame angle varies between 70° and 90° and the first DMD modes of axial velocity, temperature, and heat release rate are all at a frequency of 470 Hz. The lobes on the hub of the pilot stage suppress the formation of PVC, making the combustion very stable. The flame angle remains constant at 80°, and the gain of FTF is lower than 1. However, adding lobes to the first main stage makes the combustion extremely unstable. The flow field structure undergoes drastic changes, mimicking a “breathe” process. The flame surface is highly distorted, and flashback phenomena occur.

1.
A. H.
Lefebvre
and
D. R.
Ballal
,
Gas Turbine Combustion: Alternative Fuels and Emissions
, 3rd ed. (
CRC Press
,
2010
).
2.
T. C.
Lieuwen
and
V.
Yang
,
Gas Turbine Emissions
(
Cambridge University Press
,
Cambridge
,
2013
).
3.
W.
Meier
,
P.
Weigand
,
X. R.
Duan
, and
R.
Giezendanner-Thoben
, “
Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame
,”
Combust. Flame
150
(
1
),
2
26
(
2007
).
4.
X.
Chen Zhi
,
I.
Langella
,
N.
Swaminathan
,
M.
Stöhr
,
W.
Meier
, and
H.
Kolla
, “
Large eddy simulation of a dual swirl gas turbine combustor: Flame/flow structures and stabilisation under thermoacoustically stable and unstable conditions
,”
Combust. Flame
203
,
279
300
(
2019
).
5.
T.
Poinsot
, “
Prediction and control of combustion instabilities in real engines
,”
Proc. Combust. Inst.
36
(
1
),
1
28
(
2017
).
6.
A. C.
Benim
and
K. J.
Syed
,
Flashback Mechanisms in Lean Premixed Gas Turbine Combustion
(
Academic Press
,
2014
).
7.
S.
Candel
, “
Combustion dynamics and control: Progress and challenges
,”
Proc. Combust. Inst.
29
(
1
),
1
28
(
2002
).
8.
Z. X.
Chen
,
N.
Swaminathan
,
M.
Stöhr
, and
W.
Meier
, “
Interaction between self-excited oscillations and fuel–air mixing in a dual swirl combustor
,”
Proc. Combust. Inst.
37
(
2
),
2325
2333
(
2019
).
9.
Y.
Huang
and
V.
Yang
, “
Dynamics and stability of lean-premixed swirl-stabilized combustion
,”
Prog. Energy Combust. Sci.
35
(
4
),
293
364
(
2009
).
10.
S. K.
Dhanuka
,
J. E.
Temme
,
J. F.
Driscoll
, and
H. C.
Mongia
, “
Vortex-shedding and mixing layer effects on periodic flashback in a lean premixed prevaporized gas turbine combustor
,”
Proc. Combust. Inst.
32
(
2
),
2901
2908
(
2009
).
11.
J. E.
Temme
,
P. M.
Allison
, and
J. F.
Driscoll
, “
Combustion instability of a lean premixed prevaporized gas turbine combustor studied using phase-averaged PIV
,”
Combust. Flame
161
(
4
),
958
970
(
2014
).
12.
X.
Han
,
D.
Yang
,
J.
Wang
, and
C.
Zhang
, “
The effect of inlet boundaries on combustion instability in a pressure-elevated combustor
,”
Aerosp. Sci. Technol.
111
,
106517
(
2021
).
13.
S.
Tachibana
,
K.
Saito
,
T.
Yamamoto
,
M.
Makida
,
T.
Kitano
, and
R.
Kurose
, “
Experimental and numerical investigation of thermo-acoustic instability in a liquid-fuel aero-engine combustor at elevated pressure: Validity of large-eddy simulation of spray combustion
,”
Combust. Flame
162
(
6
),
2621
2637
(
2015
).
14.
Z.
Zhang
,
X.
Liu
,
Y.
Gong
,
Z.
Li
,
J.
Yang
, and
H.
Zheng
, “
Investigation on flame characteristics of industrial gas turbine combustor with different mixing uniformities
,”
Fuel
259
,
116297
(
2020
).
15.
Y.
Cheng
,
T.
Jin
,
K.
Luo
,
Z.
Li
,
H.
Wang
, and
J.
Fan
, “
Large eddy simulations of spray combustion instability in an aero-engine combustor at elevated temperature and pressure
,”
Aerosp. Sci. Technol.
108
,
106329
(
2021
).
16.
G.
Lv
,
X.
Liu
,
Z.
Zhang
,
S.
Li
,
E.
Liu
, and
H.
Zheng
, “
Large eddy simulations of pilot-stage equivalence ratio effects on combustion instabilities in a coaxial staged model combustor
,”
Phys. Fluids
35
(
9
),
095134
(
2023
).
17.
P.
Schmitt
,
T.
Poinsot
,
B.
Schuermans
, and
K. P.
Geigle
, “
Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high-pressure burner
,”
J. Fluid Mech.
570
,
17
46
(
2007
).
18.
R.
Gopakumar
,
S.
Mondal
,
R.
Paul
,
M.
S
, and
S.
Chaudhuri
, “
Mitigating instability by actuating the swirler in a combustor
,”
Combust. Flame
165
,
361
363
(
2016
).
19.
D. L.
Straub
and
G. A.
Richards
,
Effect of Axial Swirl Vane Location on Combustion Dynamics
(
American Society of Mechanical Engineers Digital Collection
,
2014
).
20.
D.
Durox
,
J. P.
Moeck
,
J.-F.
Bourgouin
,
P.
Morenton
,
M.
Viallon
,
T.
Schuller
, and
S.
Candel
, “
Flame dynamics of a variable swirl number system and instability control
,”
Combust. Flame
160
(
9
),
1729
1742
(
2013
).
21.
C.
Stone
and
S.
Menon
, “
Swirl control of combustion instabilities in a gas turbine combustor
,”
Proc. Combust. Inst.
29
(
1
),
155
160
(
2002
).
22.
J.
Wen
,
L.
Zhang
,
H.
Kang
,
S.
Liu
, and
K.
Wang
, “
Advances in the utilization and suppression of thermoacoustic effect: A review
,”
Int. J. Heat Mass Transfer
231
,
125758
(
2024
).
23.
M. L.
Shur
,
P. R.
Spalart
,
M. Kh.
Strelets
, and
A. K.
Travin
, “
A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities
,”
Int. J. Heat Fluid Flow
29
(
6
),
1638
1649
(
2008
).
24.
J. A.
van Oijen
and
L. P. H.
de Goey
, “
Modelling of premixed laminar flames using flamelet-generated manifolds
,”
Combust. Sci. Technol.
161
(
1
),
113
137
(
2000
).
25.
J. A.
van Oijen
,
F. A.
Lammers
, and
L. P. H.
de Goey
, “
Modeling of complex premixed burner systems by using flamelet-generated manifolds
,”
Combust. Flame
127
(
3
),
2124
2134
(
2001
).
26.
G.
Lv
,
X.
Liu
,
Z.
Zhang
,
S.
Li
,
E.
Liu
, and
H.
Zheng
, “
The effects of premixed pilot-stage on combustion instabilities in stratified swirling flames: A large eddy simulation study
,”
Energy
274
,
127246
(
2023
).
27.
S.
Akhtar
,
S.
Piffaretti
, and
T.
Shamim
, “
Numerical investigation of flame structure and blowout limit for lean premixed turbulent methane-air flames under high pressure conditions
,”
Appl. Energy
228
,
21
32
(
2018
).
28.
G. P.
Smith
,
D. M.
Golden
,
M.
Frenklach
,
N. W.
Moriarty
,
B.
Eiteneer
,
M.
Goldenberg
,
C. T.
Bowman
,
R. K.
Hanson
,
S.
Song
,
W. C.
Gardiner
, Jr.
,
V. V.
Lissianski
, and
Z.
Qin
, “
GRI-Mech 3.0
” (UC Berkeley, 1999); available at http://www.me.berkeley.edu/gri_mech/.
29.
Y. R.
Sivathanu
and
G. M.
Faeth
, “
Generalized state relationships for scalar properties in nonpremixed hydrocarbon/air flames
,”
Combust. Flame
82
(
2
),
211
230
(
1990
).
30.
T.
Poinsot
and
D.
Veynante
,
Theoretical and Numerical Combustion
(
Edwards
,
Philadelphia, PA
,
2005
).
31.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
32.
J. N.
Kutz
,
S. L.
Brunton
,
B. W.
Brunton
, and
J. L.
Proctor
,
Dynamic Mode Decomposition
(
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
,
2016
).
33.
L.
Sirovich
, “
Turbulence and the dynamics of coherent structures. I. Coherent structures
,”
Q. Appl. Math.
45
(
3
),
561
571
(
1987
).
34.
E.
Liu
,
J.
Lu
,
C.
Cao
,
X.
Liu
,
H.
Zheng
, and
H.
Zhang
, “
Analysis of flame instability in low-emission tower-type gas turbine combustor with multi-stage methane injection
,”
Fuel
344
,
128108
(
2023
).
35.
S.
Li
,
X.
Liu
,
Z.
Zhang
,
G.
Lv
,
E.
Liu
,
J.
Lu
, and
H.
Zheng
, “
The effects of swirler vane configurations on the vortex-mixing interaction and combustion stability in a low-emission combustor
,”
Fuel
360
,
130543
(
2024
).
36.
A. K.
Gupta
,
D. G.
Lilley
, and
N.
Syred
,
Swirl Flows
(
Abaqus Press
,
1984
).
37.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
Cambridge
,
2000
).
38.
N.
Syred
, “
A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems
,”
Prog. Energy Combust. Sci.
32
,
93
(
2006
).
39.
B.
Schuermans
,
F.
Guethe
,
D.
Pennell
,
D.
Guyot
, and
C. O.
Paschereit
, “
Thermoacoustic modeling of a gas turbine using transfer functions measured under full engine pressure
,”
J. Eng. Gas Turbines Power
132
,
111503
(
2010
).
40.
S.-K.
Kim
,
D.
Kim
, and
D. J.
Cha
, “
Finite element analysis of self-excited instabilities in a lean premixed gas turbine combustor
,”
Int. J. Heat Mass Transfer
120
,
350
360
(
2018
).
41.
W.
Polifke
, “
Black-box system identification for reduced order model construction
,”
Ann. Nucl. Energy
67
,
109
128
(
2014
).
You do not currently have access to this content.