This study addresses the challenge of enhancing aircraft maneuverability, particularly for vertical landing and takeoff, focusing on the fluidic aerial Coanda high efficiency orienting jet nozzle that employs the Coanda effect to achieve thrust vectoring. This research advances understanding of the interplay between geometric and fluidic factors in thrust vectoring. Stationary, turbulent, and compressible flow conditions are assumed, employing Favre-averaged Reynolds-averaged Navier–Stokes approach with the standard k-ε model. Computational solutions were obtained using a pressure-based finite volume method and a structured computational grid. The key findings include thrust vectoring enhancement due to an increase in the total mass flow rate, septum position (at no shock wave-related issues), and Reynolds number. In addition, shock wave formation (at specific mass flow rates and septum positions) considerably affects thrust vectoring. These insights are crucial for optimizing Coanda-based nozzle design in advanced propulsion systems, including in unmanned aircraft vehicles.

1.
G. R.
Hall
, “
Experimental investigation of a novel VTOL thrust vectoring nozzle
,”
J. Aircr.
2
(
4
),
312
317
(
1965
).
2.
J.
Swartz
and
A.
Razdow
, “
Thrust vector monitoring system
,” AIAA Paper No. 1963-188,
1963
.
3.
B. M.
Dunn
and
A. F.
Emery
, “
Thrust vectoring produced by a supersonic nozzle with an oblique exit plane
,”
J. Spacecr. Rockets
3
(
10
),
1500
1503
(
1966
).
4.
D.
Esker
and
A.
Sedrick
, “
Thrust stand for evaluation of thrust vectoring nozzle performance
,” AIAA Paper No. 1972-1029,
1972
.
5.
J.
Gill
, “
Advanced technology thrust vectoring exhaust systems
,” AIAA Paper No. 1973-1304,
1973
.
6.
B.
Berrier
and
R.
Re
, “
A review of thrust-vectoring schemes for fighter applications
,” AIAA Paper No. 1978-1023,
1978
.
7.
G. R.
Barnes
,
S. G.
Curry
, and
A. C.
Wood
, “
Vectoring exhaust nozzle technology
,” AIAA Paper No. 1984-1175,
1984
.
8.
E. H.
Miller
, “
Performance of a forward swept wing fighter, utilizing thrust vectoring and reversing
,”
J. Aircr.
23
(
1
),
68
75
(
1986
).
9.
B.
Gal-Or
, “
Fundamental concepts of vectored propulsion
,”
J. Propul. Power
6
(
6
),
747
757
(
1990
).
10.
P. L.
Cheatham
,
S. H.
Walker
, and
M. C.
Gridley
, “
Computation of vectoring nozzle performance
,”
J. Aircr.
28
(
11
),
768
773
(
1991
).
11.
B.
Gal-Or
and
V.
Sherbaum
, “
Thrust vectoring: theory, laboratory, and flight tests
,”
J. Propul. Power
9
(
1
),
51
58
(
1993
).
12.
B.
Gal-Or
, “
Fundamentals and similarity transformations of vectored aircraft
,”
J. Aircr.
31
(
1
),
181
187
(
1994
).
13.
J.
Flamm
, “
Experimental study of a nozzle, using fluidic counterflow for thrust vectoring
,” AIAA Paper No. 1998-3255,
1998
.
14.
B.
Gal-Or
,
V.
Sherbaum
, and
M.
Lichtsinder
, “
Fundamentals of catastrophic failure prevention by thrust vectoring
,”
J. Aircr.
32
(
3
),
577
582
(
1995
).
15.
K. A.
Deere
, “
Summary of fluidic thrust vectoring research conducted at NASA Langley Research Center
,” AIAA Paper No. 2003-3800,
2003
.
16.
K. A.
Deere
,
B. L.
Berrier
,
J. D.
Flamm
, and
S. K.
Johnson
, “
Computational study of fluidic thrust vectoring, using separation control in a nozzle
,” AIAA Paper No. 2003-3803,
2003
.
17.
S.
Afridi
,
T. A.
Khan
,
S. I. A.
Shah
,
T. A.
Shams
,
K.
Mohiuddin
, and
D. J.
Kukulka
, “
Techniques of fluidic thrust vectoring in jet engine nozzles: A review
,”
Energies
16
(
15
),
5721
(
2023
).
18.
A. K.
Das
,
K.
Acharyya
,
T. K.
Mankodi
, and
U. K.
Saha
, “
Fluidic thrust vector control of aerospace vehicles: State-of-the-art review and future prospects
,”
J. Fluids Eng.
145
(
8
),
080801
(
2023
).
19.
K.
Wu
,
Z.
Liu
,
R.
Deng
,
G.
Zhang
,
Z.
Zhu
,
V. R. P.
Sethuraman
, and
X.
Su
, “
Study on the aerodynamic performance of novel bypass shock induced thrust vector nozzle
,”
J. Appl. Fluid Mech.
16
(
4
),
765
777
(
2023
).
20.
D.
Miller
,
P.
Yagle
, and
J.
Hamstra
, “
Fluidic throat skewing for thrust vectoring in fixed-geometry nozzles
,” AIAA Paper No. 1999-365,
1999
.
21.
A.
Banazadeh
and
F.
Saghafi
, “
An investigation of empirical formulation and design optimisation of co-flow fluidic thrust vectoring nozzles
,”
Aeronaut. J.
121
(
1236
),
213
236
(
2017
).
22.
E.
Kara
and
D. F.
Kurtuluş
, “
Determination of optimum parameter space of a fluidic thrust vectoring system based on Coanda effect using gradient-based optimization technique
,”
J. Appl. Fluid Mech.
16
(
10
),
1974
1988
(
2023
).
23.
J.
Flamm
,
K.
Deere
,
M.
Mason
,
B.
Berrier
, and
S.
Johnson
, “
Experimental study of an axisymmetric dual throat fluidic thrust vectoring nozzle for supersonic aircraft application
,” AIAA Paper No. 2007-5084,
2007
.
24.
K. X.
Wu
,
T. H.
Kim
, and
H. D.
Kim
, “
Numerical study of fluidic thrust vector control, using dual throat nozzle
,”
J. Appl. Fluid Mech.
14
(
01
),
73
87
(
2021
).
25.
R.
Pan
,
J.
Xu
,
Y.
Zhang
,
Y.
Li
, and
S.
Huang
, “
Numerical simulation and experiment of a bypass dual throat nozzle with tab modification
,”
Aerosp. Sci. Technol.
144
,
108816
(
2024
).
26.
F.
Forghany
,
M. T.
Rahni
, and
A.
Asadollahi-Ghohieh
, “
Numerical investigation of optimization of injection angle effects on fluidic thrust vectoring
,”
J. Appl. Fluid Mech.
10
(
1
),
157
167
(
2017
).
27.
F.
Forghany
,
M. T.
Rahni
, and
A.
Asadollahi-Ghohieh
, “
Numerical investigation of freestream flow effects on thrust vector control performance
,”
Ain Shams Eng. J.
9
(
4
),
3293
3303
(
2018
).
28.
M. R.
Salimi
,
R.
Askari
, and
M.
Hasani
, “
Computational investigation of effects of side-injection geometry on thrust-vectoring performance in a fuel-injected dual throat nozzle
,”
J. Appl. Fluid Mech.
15
(
4
),
1137
1153
(
2022
).
29.
S.
Huang
,
J.
Xu
,
K.
Yu
,
Y.
Wang
, and
R.
Pan
, “
Design and experimental study of a bypass dual throat nozzle with the ability of short/vertical takeoff and landing
,”
Aerosp. Sci. Technol.
121
,
107301
(
2022
).
30.
M.
Trancossi
,
A.
Dumas
,
S. S.
Das
, and
J. C.
Páscoa
, “
Design methods of Coanda nozzle with two streams
,”
INCAS Bull.
6
(
1
),
83
95
(
2014
).
31.
M.
Trancossi
, “
An overview of scientific and technical literature on Coanda effect applied to nozzles
,” SAE Technical Paper No. 2011-01-2591 (
2011
).
32.
M.
Trancossi
and
A.
Dumas
, “
Coanda synthetic jet deflection apparatus and control
,” SAE Technical Paper No. 2011-01-2590 (
2011
).
33.
A.
Dumas
,
J.
Pascoa
,
M.
Trancossi
,
A.
Tacchini
,
G.
Ilieva
, and
M.
Madonia
, “
ACHEON project: A novel vectoring jet concept
,” in
the ASME International Mechanical Engineering Congress and Exposition
, Houston, Texas, USA (
ASME
,
2012
), pp.
499
508
.
34.
J. C.
Páscoa
,
A.
Dumas
,
M.
Trancossi
,
P.
Stewart
, and
D.
Vucinic
, “
A review of thrust-vectoring in support of a V/STOL non-moving mechanical propulsion system
,”
Open Eng.
3
(
3
),
374
388
(
2013
).
35.
M.
Trancossi
,
S.
Maharshi
, and
D.
Angeli
, “
Mathematical modeling of a two-streams Coanda effect nozzle
,” in
the 2013 ASME International Mechanical Engineering Congress and Exposition
, San Diego, California, USA (
ASME
,
2013
), pp.
1
10
.
36.
S.
Das
,
M.
Abdollahzadeh
,
J.
Pascoa
,
A.
Dumas
, and
M.
Trancossi
, “
Numerical modeling of Coanda effect in a novel propulsive system
,”
Int. J. Multiphysics
8
(
2
),
181
201
(
2014
).
37.
J. C.
Páscoa
,
F. F.
Rodrigues
,
S. S.
Das
,
M.
Abdollahzadeh
,
A.
Dumas
,
M.
Trancossi
, and
M.
Subhash
, “
Exist flow vector control on a coanda nozzle, using dielectric barrier discharge actuator
,” in
ASME International Mechanical Engineering Congress and Exposition
, Montreal, Quebec, Canada (
ASME
,
2014
), Vol.
1
.
38.
M.
Abdollahzadeh
,
F.
Rodrigues
,
J. C.
Pascoa
, and
P. J.
Oliveira
, “
Numerical design and analysis of a multi-DBD actuator configuration for the experimental testing of ACHEON nozzle model
,”
Aerosp. Sci. Technol.
41
,
259
273
(
2015
).
39.
M.
Trancossi
,
M.
Madonia
,
D.
Angeli
,
C.
Bingham
,
A.
Dumas
,
S.
Das
,
F.
Grimaccia
,
J.
Pascoa
,
E.
Porreca
,
T.
Smith
,
P.
Stewart
,
M.
Subhash
,
A.
Sunol
, and
D.
Vucinic
, “
A new aircraft architecture, based on the ACHEON Coanda effect nozzle: Flight model and energy evaluation
,”
Eur. Transp. Res. Rev.
8
(
2
),
11
(
2016
).
40.
A.
Dumitrache
,
F.
Frunzulica
, and
O.
Preotu
, “
Applications of the Coanda effect in aeronautics
,” in
9th International Conference on Mechanical and Aerospace Engineering
(
IEEE
,
2018
), pp.
121–125
.
41.
A.
Dumitrache
,
F.
Frunzulica
, and
T.
Ionescu
, “
Coanda effect on the flows through ejectors and channels
,”
Sci. Res. Edu. Air Force
20
(
1
),
161
174
(
2018
).
42.
Y.
El Halal
,
C.
Marques
,
L. A. O.
Rocha
,
L. A.
Isoldi
,
R.
Lemos
,
C.
Fragassa
, and
E. D.
dos Santos
, “
Numerical study of turbulent air and water flows in a nozzle based on the Coanda effect
,”
J. Mar. Sci. Eng.
7
(
2
),
21
(
2019
).
43.
Y.
El Halal
,
C.
Marques
,
R.
Lemos
,
U.
Güneş
,
L. A. O.
Rocha
,
L. A.
Isoldi
, and
E. D.
dos Santos
, “
Analysis of geometric and non-geometric parameters in a Coanda device for marine applications
,”
Ocean Eng.
244
,
110337
(
2022
).
44.
X.
Nie
,
Z.
Chen
, and
Z.
Zhu
, “
Assessment of low-Reynolds number k-ε models in prediction of a transitional flow with Coanda effect
,”
Appl. Sci.
13
(
3
),
1783
(
2023
).
45.
K.
Xu
,
X.
Su
,
Y.
Xia
,
Y.
Wu
,
R.
Bensow
, and
S.
Krajnovic
, “
Active flow control of the airflow of a ship at Yaw
,”
Ocean Eng.
273
,
113961
(
2023
).
46.
K.
Xu
,
X.
Su
,
R.
Bensow
, and
S.
Krajnovic
, “
Large eddy simulation of ship airflow control with steady Coanda effect
,”
Phys. Fluids
35
(
1
),
015112
(
2023
).
47.
D.
Hu
,
H.
Zhang
,
Y.
Zhao
, and
L.
Liu
, “
Numerical and experimental study on the performance of novel type of separation element based on Coanda effect
,”
Sep. Purif. Technol.
348
(
2
),
127697
(
2024
).
48.
M. R.
Soufivand
,
M.
Hojaji
, and
M. H.
Razavi Dehkordi
, “
Protuberance placement mastery: Shock wave control integration with Coanda effect to thrust vectoring on a sonic jet
,”
Eng. Anal. Boundary Elem.
166
(
3
),
105769
(
2024
).
49.
G. I.
Fekete
, “
Coanda flow of a two-dimensional wall jet on the outside of a circular cylinder
,”
Tech. Rep. No. 63-11
(
McGill University, Mechanical Engineering Research Lab.
,
Montreal, Canada
,
1963
).
50.
J.
Blazek
,
Computational Fluid Dynamics: Principles and Applications
(
Elsevier
,
Oxford/London
,
2005
).
51.
H.
Schlichting
and
K.
Gersten
,
Boundary-Layer Theory
(
Springer
,
Berlin/Heidelberg
,
2017
).
52.
F.
Maluta
,
A.
Paglianti
, and
G.
Montante
, “
Numerical simulations of a compact inline gas–liquid separator: A comparison between RANS and a hybrid LES-RANS approach
,”
Int. J. Multiphase Flow
171
(
1
),
104697
(
2024
).
53.
S.
Rodriguez
,
Applied Computational Fluid Dynamics and Turbulence Modeling
(
Springer International Publishing
,
Cham, Switzerland
,
2019
).
54.
M.
Szubel
,
M.
Filipowicz
,
K.
Papis-Frączek
, and
M.
Kryś
, “
Turbulent flows in RANS approach
,” in
Computational Fluid Dynamics in Renewable Energy Technologies
(
CRC Press
,
Boca Raton
,
2023
).
55.
S.
Mozaffari
,
J.
Jacob
, and
P.
Sagaut
, “
Assessment of wall modeling with adverse pressure gradient for high Reynolds number separated flows
,”
Flow, Turbul. Combust.
(published online) (
2024
).
56.
K. B.
Kuan
and
C. A.
Lin
, “
Adaptive QUICK-based scheme to approximate convective transport
,”
AIAA J.
38
(
12
),
2233
2237
(
2000
).
You do not currently have access to this content.