Advancements have been achieved in the optimization of waverider designs with the aid of machine learning to expedite the design process. However, these approaches are hampered by the need for extensive sample sizes and susceptibility to becoming ensnared in local optima. This study undertakes a parametric design based on the wedge-derived, power-law-shaped waverider, increasing configuration diversity and creating a dataset with limited samples by calculating waverider geometry and aerodynamic parameters. At a Mach number of 10, a multi-objective optimization design is implemented using the Young's double-slit experiment-least squares support vector regression (YDSE-LSSVR) surrogate model in conjunction with improved congestion distance multi-objective particle swarm optimization algorithm, focusing on maximizing the lift-to-drag ratio and volumetric efficiency as much as possible. The results indicated that, under conditions of limited samples, the YDSE-LSSVR model outperforms standard models such as support vector regression, LSSVR, Kriging, and Polynomial Chaos Expansions-Kriging regarding prediction accuracy. The Pareto solutions for both concave and convex waveriders, obtained through multi-objective optimization, improve the lift-to-drag ratio by 17.36% and 21.70%, respectively, and increase the volumetric efficiency by 88.89% and 105.56%, in comparison to baseline configurations. In addition, the research examines the impact of various design parameters on the Pareto solutions. Finally, the study applies the K-means method to conduct a cluster analysis of the Pareto solutions, generating three-dimensional waverider configurations based on distinguished solutions from different clusters.

1.
Z. T.
Zhao
,
W.
Huang
,
L.
Yan
, and
Y. G.
Yang
, “
An overview of research on wide-speed range waverider configuration
,”
Prog. Aerosp. Sci.
113
,
100606
(
2020
).
2.
F.
Ding
,
J.
Liu
,
C. B.
Shen
,
W.
Huang
,
Z.
Liu
, and
S. H.
Chen
, “
An overview of waverider design concept in airframe/inlet integration methodology for air-breathing hypersonic vehicles
,”
Acta Astronaut.
152
,
639
656
(
2018
).
3.
K.
Kontogiannis
,
A.
Sóbester
, and
N.
Taylor
, “
Efficient parameterization of waverider geometries
,”
J. Aircr.
54
(
3
),
890
901
(
2017
).
4.
C.
Liu
,
Q.
Liu
,
P.
Bai
, and
W.
Zhou
, “
Planform-customized waverider design integrating with vortex effect
,”
Aerosp. Sci. Technol.
86
,
438
443
(
2019
).
5.
R. P.
Starkey
and
M. J.
Lewis
, “
Simple analytical model for parametric studies of hypersonic waveriders
,”
J. Spacecr. Rockets
36
(
4
),
516
523
(
1999
).
6.
J.
Son
,
C.
Son
, and
K.
Yee
, “
A novel direct optimization framework for hypersonic waverider inverse design methods
,”
Aerospace
9
(
7
),
348
(
2022
).
7.
W.
Liu
,
C. A.
Zhang
,
F. M.
Wang
, and
Z. Y.
Ye
, “
Design and optimization method for hypersonic quasi-waverider
,”
AIAA J.
58
(
5
),
2132
2146
(
2020
).
8.
S.
Guo
,
W.
Liu
,
C.
Zhang
, and
F.
Wang
, “
Design and optimization for hypersonic cone-derived waverider with blunted leading-edge
,”
Chin. J. Theor. Appl. Mech.
54
(
5
),
1414
1428
(
2022
).
9.
C.
Liu
,
P.
Bai
,
B.
Chen
, and
C.
Ji
, “
Rapid design and multi-object optimization for waverider from 3D flow
,”
J. Astronaut.
37
(
5
),
535
543
(
2016
).
10.
R.
Mirabbasi
,
O.
Kisi
,
H.
Sanikhani
, and
S.
Gajbhiye Meshram
, “
Monthly long-term rainfall estimation in central India using M5Tree, MARS, LSSVR, ANN and GEP models
,”
Neural Comput. Appl.
31
,
6843
6862
(
2019
).
11.
L.
Chen
,
H.
Wang
,
F.
Ye
, and
W.
Hu
, “
Comparative study of HDMRs and other popular metamodeling techniques for high dimensional problems
,”
Struct. Multidiscip. Optim.
59
,
21
42
(
2019
).
12.
B. W.
Wang
,
W. Z.
Tang
,
L. K.
Song
, and
G. C.
Bai
, “
PSO-LSSVR: A surrogate modeling approach for probabilistic flutter evaluation of compressor blade
,”
Structures
28
,
1634
1645
(
2020
).
13.
P.
Huang
,
H.
Yu
, and
T.
Wang
, “
A study using optimized LSSVR for real-time fault detection of liquid rocket engine
,”
Processes
10
(
8
),
1643
(
2022
).
14.
J. D. A.
Santos
and
G. A.
Barreto
, “
Novel sparse LSSVR models in primal weight space for robust system identification with outliers
,”
J. Process Control
67
,
129
140
(
2018
).
15.
C. N.
Li
,
Y. H.
Shao
,
D.
Zhao
,
Y. R.
Guo
, and
X. Y.
Hua
, “
Feature selection for high-dimensional regression via sparse LSSVR based on Lp-norm
,”
Int. J. Intell. Syst.
36
(
2
),
1108
1130
(
2021
).
16.
M. W.
Li
,
J.
Geng
,
W. C.
Hong
, and
L. D.
Zhang
, “
Periodogram estimation based on LSSVR-CCPSO compensation for forecasting ship motion
,”
Nonlinear Dyn.
97
,
2579
2594
(
2019
).
17.
M.
Abdel-Basset
,
D.
El-Shahat
,
M.
Jameel
, and
M.
Abouhawwash
, “
Young's double-slit experiment optimizer: A novel metaheuristic optimization algorithm for global and constraint optimization problems
,”
Comput. Methods Appl. Mech. Eng.
403
,
115652
(
2023
).
18.
Z.
Chi
,
W.
Chu
,
H.
Zhang
, and
Z.
Zhang
, “
Stall margin evaluation and data mining based multi-objective optimization design of casing treatment for an axial compressor rotor
,”
Phys. Fluids
35
(
8
),
086117
(
2023
).
19.
Y.
Tian
,
J.
Zhu
,
M.
Sun
,
M.
Wan
,
Y.
Sun
,
B.
Yan
,
T.
Luo
,
Z.
He
, and
H.
Wang
, “
Combustion enhancement in a model scramjet by a simple pin-to-pin AC arc plasma
,”
Proc. Combust. Inst.
40
(
1–4
),
105259
(
2024
).
20.
Y.
Tian
,
J.
Zhu
,
M.
Sun
,
H.
Wang
,
Y.
Huang
,
R.
Feng
,
B.
Yan
,
Y.
Sun
, and
Z.
Cai
, “
Enhancement of blowout limit in a Mach 2.92 cavity-based scramjet combustor by a gliding arc discharge
,”
Proc. Combust. Inst.
39
(
4
),
5697
5705
(
2023
).
21.
Z.
Saboohi
,
F.
Ommi
, and
M. J.
Akbari
, “
Multi-objective optimization approach toward conceptual design of gas turbine combustor
,”
Appl. Therm. Eng.
148
,
1210
1223
(
2019
).
22.
J.
Tao
,
G.
Sun
,
X.
Wang
, and
L.
Guo
, “
Robust optimization for a wing at drag divergence Mach number based on an improved PSO algorithm
,”
Aerosp. Sci. Technol.
92
,
653
667
(
2019
).
23.
M. J.
Mahmoodabadi
and
N. R.
Babak
, “
Robust fuzzy linear quadratic regulator control optimized by multi-objective high exploration particle swarm optimization for a 4 degree-of-freedom quadrotor
,”
Aerosp. Sci. Technol.
97
,
105598
(
2020
).
24.
R.
Feng
,
J.
Zhu
,
Z.
Wang
,
F.
Zhang
,
Y.
Ban
,
G.
Zhao
,
Y.
Tian
,
C.
Wang
,
H.
Wang
,
Z.
Cai
, and
M.
Sun
, “
Suppression of combustion mode transitions in a hydrogen-fueled scramjet combustor by a multi-channel gliding arc plasma
,”
Combust. Flame
237
,
111843
(
2022
).
25.
B.
Mi
,
S.
Cheng
,
Y.
Luo
, and
H.
Fan
, “
A new many-objective aerodynamic optimization method for symmetrical elliptic airfoils by PSO and direct-manipulation-based parametric mesh deformation
,”
Aerosp. Sci. Technol.
120
,
107296
(
2022
).
26.
Y.
Ma
,
M.
Guo
,
Y.
Zhang
,
J.
Le
,
Y.
Tian
,
S.
Tong
,
H.
Zhang
,
F.
Tang
, and
Z.
Zhao
, “
Dynamic multi-objective optimization of scramjet inlet based on small-sample kriging model
,”
Phys. Fluids
35
(
9
),
095136
(
2023
).
27.
S.
Zhao
,
T.
Zhang
,
L.
Cai
, and
R.
Yang
, “
Triangulation topology aggregation optimizer: A novel mathematics-based meta-heuristic algorithm for continuous optimization and engineering applications
,”
Expert Syst. Appl.
238
,
121744
(
2024
).
28.
S.
Liang
,
M.
Guo
,
M.
Yi
,
Y.
Tian
,
W.
Song
, and
J.
Le
, “
Data assimilation method and application of shear stress transport turbulence model for complex separation of internal shock boundary layer flow
,”
Phys. Fluids
36
(
5
),
055113
(
2024
).
29.
J.
Wang
,
T.
Wang
,
Y.
Wang
,
C.
Wen
,
L.
Zhang
, and
Z.
Sun
, “
Prediction and sensitivity analysis of the pressure wave peak value induced by the high-speed train in the long tunnel under a high geothermal environment
,”
Phys. Fluids
36
(
8
),
086106
(
2024
).
30.
Q.
Li
,
J.
Zhu
,
Y.
Tian
,
M.
Sun
,
M.
Wan
,
B.
Yan
,
T.
Luo
,
Y.
Sun
,
C.
Wang
,
T.
Tang
, and
H.
Wang
, “
Investigation of ignition and flame propagation in an axisymmetric supersonic combustor with laser-induced plasma
,”
Phys. Fluids
35
(
12
),
125133
(
2023
).
31.
Z.
Zhao
,
X.
Liu
,
X.
Zheng
, and
J.
Fu
, “
An advanced polynomial chaos expansion method for sensitivity analysis of aero-engine fuel gear pumps
,”
Phys. Fluids
36
(
7
),
077114
(
2024
).
You do not currently have access to this content.