The drag reduction efficacy of a large-scale flow control over a rough surface is studied via direct numerical simulations of turbulent channels (at friction Reynolds numbers Reτ=180) by combining together wall riblets and streamwise counter-rotating swirls. In particular, the height of triangular riblets is h+10 (+indicating wall units), while the number of riblets (NRib in the range 1–56) along the periodic spanwise direction is varied to find the optimum. The swirls are generated by the spanwise opposed wall-jet forcing (SOJF) in the Navier–Stokes equation, whose controlling parameters follow the optimal ones as for the smooth wall. In total, 12 cases of combined SOJF and riblets are performed to investigate the coupling effects between the two methods. We find a range of NRib=7–14 (with the spanwise width z+140280) yields the largest drag reduction (up to 20%) for Reτ=180, much higher than riblets control only (about 3%). Compared to SOJF control only, riblets suppress the secondary swirls of SOJF hence decreasing drag, while the lateral and down washing motions of SOJF impinging on riblets would increase drag—the opposite two effects thus giving rise to an optimal. Through examinations on coherent structures, we elucidate that the attenuation of both large-scale coherent motions and small-scale random fluctuations leads to the net drag reduction. We conclude that large-scale control is a robust approach in the cases of rough surfaces, and the parameters can be selected for maximum drag reduction in each particular situation.

1.
Abbas
,
A.
,
Bugeda
,
G.
,
Ferrer
,
E.
,
Fu
,
S.
,
Periaux
,
J.
,
Pons-Prats
,
J.
,
Valero
,
E.
, and
Zheng
,
Y.
, “
Drag reduction via turbulent boundary layer flow control
,”
Sci. China Technol. Sci.
60
,
1281
1290
(
2017
).
2.
Bannier
,
A.
,
Garnier
,
É.
, and
Sagaut
,
P.
, “
Riblet flow model based on an extended fik identity
,”
Flow. Turbul. Combust.
95
,
351
376
(
2015
).
3.
Bechert
,
D.
and
Bartenwerfer
,
M.
, “
The viscous flow on surfaces with longitudinal ribs
,”
J. Fluid Mech.
206
,
105
129
(
1989
).
4.
Bechert
,
D.
,
Bruse
,
M.
,
Hage
,
W. v.
,
Van der Hoeven
,
J. T.
, and
Hoppe
,
G.
, “
Experiments on drag-reducing surfaces and their optimization with an adjustable geometry
,”
J. Fluid Mech.
338
,
59
87
(
1997
).
5.
Cafiero
,
G.
,
Amico
,
E.
, and
Iuso
,
G.
, “
Manipulation of a turbulent boundary layer using sinusoidal riblets
,”
J. Fluid Mech.
984
,
A59
(
2024
).
6.
Cannata
,
M.
,
Cafiero
,
G.
, and
Iuso
,
G.
, “
Large-scale forcing of a turbulent channel flow through spanwise synthetic jets
,”
AIAA J.
58
,
2042
2052
(
2020
).
7.
Canton
,
J.
,
Örlü
,
R.
,
Chin
,
C.
,
Hutchins
,
N.
,
Monty
,
J.
, and
Schlatter
,
P.
, “
On large-scale friction control in turbulent wall flow in low Reynolds number channels
,”
Flow, Turbul. Combust.
97
,
811
827
(
2016a
).
8.
Canton
,
J.
,
Örlü
,
R.
,
Chin
,
C.
, and
Schlatter
,
P.
, “
Reynolds number dependence of large-scale friction control in turbulent channel flow
,”
Phys. Rev. Fluids
1
,
081501
(
2016b
).
9.
Chandran
,
D.
,
Zampiron
,
A.
,
Rouhi
,
A.
,
Fu
,
M. K.
,
Wine
,
D.
,
Holloway
,
B.
,
Smits
,
A. J.
, and
Marusic
,
I.
, “
Turbulent drag reduction by spanwise wall forcing. Part 2. High-Reynolds-number experiments
,”
J. Fluid Mech.
968
,
A7
(
2023
).
10.
Chen
,
X.
,
Yao
,
J.
, and
Hussain
,
F.
, “
Theoretical framework for energy flux analysis of channels under drag control
,”
Phys. Rev. Fluids
6
,
013902
(
2021
).
11.
Cheng
,
X.
,
Wong
,
C.
,
Hussain
,
F.
,
Schröder
,
W.
, and
Zhou
,
Y.
, “
Flat plate drag reduction using plasma-generated streamwise vortices
,”
J. Fluid Mech.
918
,
A24
(
2021
).
12.
Choi
,
H.
,
Moin
,
P.
, and
Kim
,
J.
, “
Direct numerical simulation of turbulent flow over riblets
,”
J. Fluid Mech.
255
,
503
539
(
1993
).
13.
Choi
,
H.
,
Moin
,
P.
, and
Kim
,
J.
, “
Active turbulence control for drag reduction in wall-bounded flows
,”
J. Fluid Mech.
262
,
75
110
(
1994
).
14.
Chu
,
D. C.
and
Karniadakis
,
G. E.
, “
A direct numerical simulation of laminar and turbulent flow over riblet-mounted surfaces
,”
J. Fluid Mech.
250
,
1
42
(
1993
).
15.
Chung
,
D.
,
Hutchins
,
N.
,
Schultz
,
M. P.
, and
Flack
,
K. A.
, “
Predicting the drag of rough surfaces
,”
Annu. Rev. Fluid Mech.
53
,
439
471
(
2021
).
16.
Chung
,
D.
,
Monty
,
J. P.
, and
Hutchins
,
N.
, “
Similarity and structure of wall turbulence with lateral wall shear stress variations
,”
J. Fluid Mech.
847
,
591
613
(
2018
).
17.
Chung
,
Y. M.
and
Talha
,
T.
, “
Effectiveness of active flow control for turbulent skin friction drag reduction
,”
Phys. Fluids
23
,
025102
(
2011
).
18.
Deng
,
B.-Q.
and
Xu
,
C.-X.
, “
Influence of active control on stg-based generation of streamwise vortices in near-wall turbulence
,”
J. Fluid Mech.
710
,
234
259
(
2012
).
19.
Endrikat
,
S.
,
Newton
,
R.
,
Modesti
,
D.
,
García-Mayoral
,
R.
,
Hutchins
,
N.
, and
Chung
,
D.
, “
Reorganisation of turbulence by large and spanwise-varying riblets
,”
J. Fluid Mech.
952
,
A27
(
2022
).
20.
Fukagata
,
K.
,
Iwamoto
,
K.
, and
Kasagi
,
N.
, “
Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows
,”
Phys. Fluids
14
,
L73
L76
(
2002
).
21.
Garcia-Mayoral
,
R.
and
Jimenez
,
J.
, “
Hydrodynamic stability and breakdown of the viscous regime over riblets
,”
J. Fluid Mech.
678
,
317
347
(
2011
).
22.
Garcia-Mayoral
,
R.
,
Gómez-de Segura
,
G.
, and
Fairhall
,
C. T.
, “
The control of near-wall turbulence through surface texturing
,”
Fluid Dyn. Res.
51
,
011410
(
2019
).
23.
Gatti
,
D.
,
von Deyn
,
L.
,
Forooghi
,
P.
, and
Frohnapfel
,
B.
, “
Do riblets exhibit fully rough behaviour?
,”
Exp. Fluids
61
,
81
(
2020
).
24.
Gatti
,
D.
and
Quadrio
,
M.
, “
Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing
,”
J. Fluid Mech.
802
,
553
582
(
2016
).
25.
Goldstein
,
D.
,
Handler
,
R.
, and
Sirovich
,
L.
, “
Direct numerical simulation of turbulent flow over a modeled riblet covered surface
,”
J. Fluid Mech.
302
,
333
376
(
1995
).
26.
Guangyao
,
C.
,
Chong
,
P.
,
Di
,
W.
,
Qingqing
,
Y.
, and
Jinjun
,
W.
, “
Effect of drag reducing riblet surface on coherent structure in turbulent boundary layer
,”
Chin. J. Aeronaut.
32
,
2433
2442
(
2019
).
27.
He
,
J.-C.
,
Bao
,
Y.
, and
Chen
,
X.
, “
Scaling transition of thermal dissipation in turbulent convection
,”
Phys. Fluids
35
,
015126
(
2023
).
28.
Iuso
,
G.
,
Onorato
,
M.
,
Spazzini
,
P. G.
, and
di Cicca
,
G. M.
, “
Wall turbulence manipulation by large-scale streamwise vortices
,”
J. Fluid Mech.
473
,
23
58
(
2002
).
29.
Jeong
,
J.
and
Hussain
,
F.
, “
On the identification of a vortex
,”
J. Fluid Mech.
285
,
69
94
(
1995
).
30.
Ji
,
Y.
,
Yao
,
J.
,
Hussain
,
F.
, and
Chen
,
X.
, “
Vorticity transports in turbulent channels under large-scale control via spanwise wall jet forcing
,”
Phys. Fluids
33
,
095112
(
2021
).
31.
Jung
,
W.-J.
,
Mangiavacchi
,
N.
, and
Akhavan
,
R.
, “
Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations
,”
Phys. Fluids A
4
,
1605
1607
(
1992
).
32.
Kametani
,
Y.
and
Fukagata
,
K.
, “
Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction
,”
J. Fluid Mech.
681
,
154
172
(
2011
).
33.
Kennedy
,
J. F.
,
Hsu
,
S.-T.
, and
Lin
,
J.-T.
, “
Turbulent flows past boundaries with small streamwise fins
,”
J. Hydraul. Div.
99
,
605
616
(
1973
).
34.
Lee
,
M.
and
Moser
,
R. D.
, “
Direct numerical simulation of turbulent channel flow up to
,”
J. Fluid Mech.
774
,
395
415
(
2015
).
35.
Li
,
B.-H.
,
Wang
,
K.-J.
,
Wang
,
Y.-F.
, and
Jiang
,
N.
, “
Experimental investigation on drag reduction in a turbulent boundary layer with a submerged synthetic jet
,”
Chin. Phys. B
31
,
024702
(
2022
).
36.
Li
,
W.
and
Liu
,
H.
, “
Two-point statistics of coherent structures in turbulent flow over riblet-mounted surfaces
,”
Acta Mech. Sin.
35
,
457
471
(
2019
).
37.
Lozier
,
M.
,
Thomas
,
F. O.
, and
Gordeyev
,
S.
, “
Response of a turbulent boundary layer to an imposed synthetic large-scale structure
,”
AIAA J.
62
,
573
589
(
2024
).
38.
Marusic
,
I.
,
Chandran
,
D.
,
Rouhi
,
A.
,
Fu
,
M. K.
,
Wine
,
D.
,
Holloway
,
B.
,
Chung
,
D.
, and
Smits
,
A. J.
, “
An energy-efficient pathway to turbulent drag reduction
,”
Nat. Commun.
12
,
5805
(
2021
).
39.
Mittal
,
R.
and
Iaccarino
,
G.
, “
Immersed boundary methods
,”
Annu. Rev. Fluid Mech.
37
,
239
261
(
2005
).
40.
Modesti
,
D.
,
Endrikat
,
S.
,
Hutchins
,
N.
, and
Chung
,
D.
, “
Dispersive stresses in turbulent flow over riblets
,”
J. Fluid Mech.
917
,
A55
(
2021
).
41.
Modesti
,
D.
,
Pirozzoli
,
S.
,
Orlandi
,
P.
, and
Grasso
,
F.
, “
On the role of secondary motions in turbulent square duct flow
,”
J. Fluid Mech.
847
,
R1
(
2018
).
42.
Oliver
,
T. A.
,
Malaya
,
N.
,
Ulerich
,
R.
, and
Moser
,
R. D.
, “
Estimating uncertainties in statistics computed from direct numerical simulation
,”
Phys. Fluids
26
,
035101
(
2014
).
43.
Peet
,
Y.
and
Sagaut
,
P.
, “
Theoretical prediction of turbulent skin friction on geometrically complex surfaces
,”
Phys. Fluids
21
,
035101
(
2009
).
44.
Peskin
,
C. S.
, “
The immersed boundary method
,”
Acta Numer.
11
,
479
517
(
2002
).
45.
Quadrio
,
M.
,
Ricco
,
P.
, and
Viotti
,
C.
, “
Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction
,”
J. Fluid Mech.
627
,
161
178
(
2009
).
46.
Renard
,
N.
and
Deck
,
S.
, “
A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer
,”
J. Fluid Mech.
790
,
339
367
(
2016
).
47.
Reynolds
,
W.
and
Hussain
,
A.
, “
The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments
,”
J. Fluid Mech.
54
,
263
288
(
1972
).
48.
Ricco
,
P.
,
Skote
,
M.
, and
Leschziner
,
M. A.
, “
A review of turbulent skin-friction drag reduction by near-wall transverse forcing
,”
Prog. Aerosp. Sci.
123
,
100713
(
2021
).
49.
Rothstein
,
J. P.
, “
Slip on superhydrophobic surfaces
,”
Annu. Rev. Fluid Mech.
42
,
89
109
(
2010
).
50.
Rouhi
,
A.
,
Fu
,
M. K.
,
Chandran
,
D.
,
Zampiron
,
A.
,
Smits
,
A. J.
, and
Marusic
,
I.
, “
Turbulent drag reduction by spanwise wall forcing. Part 1. Large-eddy simulations
,”
J. Fluid Mech.
968
,
A6
(
2023
).
51.
Schoppa
,
W.
and
Hussain
,
F.
, “
A large-scale control strategy for drag reduction in turbulent boundary layers
,”
Phys. Fluids
10
,
1049
1051
(
1998
).
52.
Schoppa
,
W.
and
Hussain
,
F.
, “
Coherent structure generation in near-wall turbulence
,”
J. Fluid Mech.
453
,
57
108
(
2002
).
53.
Spalart
,
P. R.
and
McLean
,
J. D.
, “
Drag reduction: Enticing turbulence, and then an industry
,”
Philos. Trans. R Soc. A
369
,
1556
1569
(
2011
).
54.
Szodruch
,
J.
, “
Viscous drag reduction on transport aircraft
,” AIAA Paper No. AIAA 1991-685,
1991
.
55.
Taira
,
K.
and
Colonius
,
T.
, “
The immersed boundary method: A projection approach
,”
J. Comput. Phys.
225
,
2118
2137
(
2007
).
56.
Thomas
,
F.
,
Corke
,
T.
,
Duong
,
A.
,
Midya
,
S.
, and
Yates
,
K.
, “
Turbulent drag reduction using pulsed-DC plasma actuation
,”
J. Phys. D
52
,
434001
(
2019
).
57.
Thomas
,
F. O.
,
Corke
,
T. C.
, and
Duong
,
A. H.
, “
Airfoil friction drag reduction with net power savings using pulsed-direct-current plasma actuation
,”
AIAA J.
61
,
4045
4055
(
2023
).
58.
Waleffe
,
F.
, “
On a self-sustaining process in shear flows
,”
Phys. Fluids
9
,
883
900
(
1997
).
59.
Wallace
,
J. M.
, “
Quadrant analysis in turbulence research: History and evolution
,”
Annu. Rev. Fluid Mech.
48
,
131
158
(
2016
).
60.
Walsh
,
M. J.
, “
Drag characteristics of v-groove and transverse curvature riblets
,” in
Symposium on Viscous Flow Drag Reduction
,
1980
.
61.
Walsh
,
M. J.
, “
Turbulent boundary layer drag reduction using riblets
,” AIAA Paper No. AIAA 1982-169,
1982
.
62.
Wang
,
H.-N.
,
Li
,
R.-X.
,
Huang
,
W.-X.
, and
Xu
,
C.-X.
, “
Inflow turbulence generation using an equivalent boundary layer model
,”
Phys. Fluids
35
,
075110
(
2023
).
63.
White
,
C. M.
and
Mungal
,
M. G.
, “
Mechanics and prediction of turbulent drag reduction with polymer additives
,”
Annu. Rev. Fluid Mech.
40
,
235
256
(
2008
).
64.
Xia
,
Q.-J.
,
Huang
,
W.-X.
,
Xu
,
C.-X.
, and
Cui
,
G.-X.
, “
Direct numerical simulation of spatially developing turbulent boundary layers with opposition control
,”
Fluid Dyn. Res.
47
,
025503
(
2015
).
65.
Xie
,
F.
,
Pérez-Muñoz
,
J. D.
,
Qin
,
N.
, and
Ricco
,
P.
, “
Drag reduction in wall-bounded turbulence by synthetic jet sheets
,”
J. Fluid Mech.
941
,
A63
(
2022
).
66.
Xie
,
J.
,
He
,
J.
,
Bao
,
Y.
, and
Chen
,
X.
, “
A low-communication-overhead parallel DNS method for the 3D incompressible wall turbulence
,”
Int. J. Comput. Fluid Dyn.
35
,
413
420
(
2021
).
67.
Yamamoto
,
S.
and
Mizutani
,
K.
, “
A very simple immersed boundary method applied to three-dimensional incompressible Navier-Stokes solvers using staggered grid
,” in
ASME/JSME 2007 5th Joint Fluids Engineering Conference
(ASME,
2007
), pp.
63
68
.
68.
Yao
,
J.
,
Chen
,
X.
, and
Hussain
,
F.
, “
Composite active drag control in turbulent channel flows
,”
Phys. Rev. Fluids
6
,
054605
(
2021
).
69.
Yao
,
J.
,
Chen
,
X.
, and
Hussain
,
F.
, “
Drag control in wall-bounded turbulent flows via spanwise opposed wall-jet forcing
,”
J. Fluid Mech.
852
,
678
709
(
2018
).
70.
Yao
,
J.
,
Chen
,
X.
,
Thomas
,
F.
, and
Hussain
,
F.
, “
Large-scale control strategy for drag reduction in turbulent channel flows
,”
Phys. Rev. Fluids
2
,
062601
(
2017
).
71.
Yi
,
Z.
,
Chong
,
P.
,
Jianyu
,
D.
, and
Miao
,
Z.
, “
Flowfield and friction characteristics downstream of mirco vortex generator in turbulent boundary layer
,”
J. Exp. Fluid Mech.
37
,
1
11
(
2023
).
72.
Yu
,
M.
,
Jin
,
Y.
,
Zheng
,
B.
, and
Hu
,
Y.
, “
Effects of different working parameters on the turbulent drag reduction regulated by annular plasma synthetic jet actuators
,”
Phys. Plasmas
30
,
113509
(
2023
).
You do not currently have access to this content.