In this paper, we introduce the first jet nozzle allowing simultaneous shape variation and distributed active control, termed “Smart Nozzle” in the sequel. Our Smart Nozzle manipulates the jet with an adjustable flexible shape via 12 equidistant stepper motors and 12 equidistantly placed inward-pointing minijets. The mixing performance is evaluated with a 7 × 7 array of Pitot tubes at the end of the potential core. The experimental investigation is carried out in three steps. First, we perform an aerodynamic characterization of the unforced round jet flow. Second, we investigate the mixing performance under five representative nozzle geometries, including round, elliptical, triangular, squared, and hexagonal shapes. The greatest mixing area is achieved with the square shape. Third, the symmetric forcing parameters are optimized for each specified nozzle shape with a machine learning algorithm. The best mixing enhancement for a symmetric active control is obtained by the squared shape, which results in a 1.93-fold mixing area increase as compared to the unforced case. Symmetrically unconstrained forcing achieves a nearly 4.5-fold mixing area increase. The Smart Nozzle demonstrates the feasibility of novel flow control techniques that combine shape variation and active control, leveraging the capabilities of machine learning optimization algorithms.

1.
P.
Bradshaw
, “
The effect of initial conditions on the development of a free shear layer
,”
J. Fluid Mech.
26
,
225
236
(
1966
).
2.
S. C.
Crow
and
F. H.
Champagne
, “
Orderly structure in jet turbulence
,”
J. Fluid Mech.
48
,
547
591
(
1971
).
3.
P. E.
Dimotakis
and
G. L.
Brown
, “
The mixing layer at high Reynolds number: Large-structure dynamics and entrainment
,”
J. Fluid Mech.
78
,
535
560
(
1976
).
4.
M. N.
Glauser
,
S. J.
Leib
, and
W. K.
George
, “
Coherent structures in the axisymmetric turbulent jet mixing layer
,” in
Turbulent Shear Flows 5
(
Springer Berlin Heidelberg
,
1987
).
5.
P.
Jordan
and
T.
Colonius
, “
Wave packets and turbulent jet noise
,”
Annu. Rev. Fluid Mech.
45
,
173
195
(
2013
).
6.
S.
Jayanti
, “
Hydrodynamics of jet mixing in vessels
,”
Chem. Eng. Sci.
56
,
193
210
(
2001
).
7.
P.
Ranadive
,
A.
Parulkar
, and
N. A.
Brunelli
, “
Jet-mixing reactor for the production of monodisperse silver nanoparticles using a reduced amount of capping agent
,”
React. Chem. Eng.
4
,
1779
1789
(
2019
).
8.
G.
Faeth
, “
Mixing, transport and combustion in sprays
,”
Prog. Energy Combust. Sci.
13
,
293
345
(
1987
).
9.
J. P.
Drummond
,
G. S.
Diskin
, and
A. D.
Cutler
, “
Fuel-air mixing and combustion in scramjets
,” in
38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
(
AIAA
,
2002
).
10.
Y.
Tominaga
and
T.
Stathopoulos
, “
CFD simulation of near-field pollutant dispersion in the urban environment: A review of current modeling techniques
,”
Atmos. Environ.
79
,
716
730
(
2013
).
11.
N. M.
Said
,
H.
Mhiri
,
S.
El Golli
,
G.
Le Palec
, and
P.
Bournot
, “
Three-dimensional numerical calculations of a jet in an external cross flow: Application to pollutant dispersion
,”
J. Heat Transfer
125
,
510
522
(
2003
).
12.
H.
Hu
,
T.
Saga
,
T.
Kobayashi
, and
N.
Taniguchi
, “
A study on a lobed jet mixing flow by using stereoscopic particle image velocimetry technique
,”
Phys. Fluids
13
,
3425
3441
(
2001
).
13.
M.
Samimy
,
K. B. M. Q.
Zaman
, and
M. F.
Reeder
, “
Effect of tabs on the flow and noise field of an axisymmetric jet
,”
AIAA J.
31
,
609
619
(
1993
).
14.
Y.
Zhou
,
D.
Fan
,
B.
Zhang
,
R.
Li
, and
B. R.
Noack
, “
Artificial intelligence control of a turbulent jet
,”
J. Fluid Mech.
897
,
A27
(
2020
).
15.
C. M.
Ho
and
E.
Gutmark
, “
Vortex induction and mass entrainment in a small-aspect-ratio elliptic jet
,”
J. Fluid Mech.
179
,
383
405
(
1987
).
16.
F.
Hussain
and
H. S.
Husain
, “
Elliptic jets. Part 1. Characteristics of unexcited and excited jets
,”
J. Fluid Mech.
208
,
257
320
(
1989
).
17.
W. R.
Quinn
, “
On mixing in an elliptic turbulent free jet
,”
Phys. Fluid
1
,
1716
1722
(
1989
).
18.
J.
Mi
,
G. J.
Nathan
, and
R. E.
Luxton
, “
Centreline mixing characteristics of jets from nine differently shaped nozzles
,”
Exp. Fluids
28
,
93
94
(
2000
).
19.
J.
Mi
and
G. J.
Nathan
, “
Statistical properties of turbulent free jets issuing from nine differently-shaped nozzles
,”
Flow Turbul. Combust.
84
,
583
606
(
2010
).
20.
A.
Hashiehbaf
and
G.
Romano
, “
Particle image velocimetry investigation on mixing enhancement of non-circular sharp edge nozzles
,”
Int. J. Heat Fluid Flow
44
,
208
221
(
2013
).
21.
Ł.
Kuban
,
J.
Stempka
, and
A.
Tyliszczak
, “
Numerical analysis of the combustion dynamics of passively controlled jets issuing from polygonal nozzles
,”
Energies
14
,
554
(
2021
).
22.
A.
Tyliszczak
,
L.
Kuban
, and
J.
Stempka
, “
Numerical analysis of non-excited and excited jets issuing from non-circular nozzles
,”
Int. J. Heat Fluid Flow
94
,
108944
(
2022
).
23.
M.
Samimy
,
I.
Adamovich
,
B.
Webb
,
J.
Kastner
,
J.
Hileman
,
S.
Keshav
, and
P.
Palm
, “
Development and characterization of plasma actuators for high-speed jet control
,”
Exp. Fluids
37
,
577
588
(
2004
).
24.
N.
Benard
,
J. P.
Bonnet
,
G.
Touchard
, and
E.
Moreau
, “
Flow control by dielectric barrier discharge actuators: Jet mixing enhancement
,”
AIAA J.
46
,
2293
2305
(
2008
).
25.
J. B.
Freund
and
P.
Moin
, “
Jet mixing enhancement by high-amplitude fluidic actuation
,”
AIAA J.
38
,
1863
1870
(
2000
).
26.
M. K.
Ibrahim
,
R.
Kunimura
, and
Y.
Nakamura
, “
Mixing enhancement of compressible jets by using unsteady microjets as actuators
,”
AIAA J.
40
,
681
688
(
2002
).
27.
H.
Suzuki
,
N.
Kasagi
, and
Y.
Suzuki
, “
Active control of an axisymmetric jet with distributed electromagnetic flap actuators
,”
Exp. Fluids
36
,
498
509
(
2004
).
28.
S. L.
Brunton
,
B. R.
Noack
, and
P.
Koumoutsakos
, “
Machine learning for fluid mechanics
,”
Annu. Rev. Fluid Mech.
52
,
477
508
(
2020
).
29.
C. O.
Paschereit
,
B.
Schuermans
, and
D.
Büche
, “
Combustion process optimization using evolutionary algorithm
,” in
Volume 2: Turbo Expo 2003
(
ASMEDC
,
2003
).
30.
H.
Li
,
J.
Tan
,
Z.
Gao
, and
B. R.
Noack
, “
Machine learning open-loop control of a mixing layer
,”
Phys. Fluids
32
,
111701
(
2020
).
31.
Y.
Li
,
W.
Cui
,
Q.
Jia
,
Q.
Li
,
Z.
Yang
,
M.
Morzyński
, and
B. R.
Noack
, “
Explorative gradient method for active drag reduction of the fluidic pinball and slanted Ahmed body
,”
J. Fluid Mech.
932
,
A7
(
2022
).
32.
F.
Zigunov
,
P.
Sellappan
, and
F.
Alvi
, “
A bluff body flow control experiment with distributed actuation and genetic algorithm-based optimization
,”
Exp. Fluids
63
,
23
(
2022
).
33.
T.
Duriez
,
S. L.
Brunton
, and
B. R.
Noack
,
Machine Learning Control—Taming Nonlinear Dynamics and Turbulence
(
Springer International Publishing
,
2017
).
34.
J.
Rabault
,
M.
Kuchta
,
A.
Jensen
,
U.
Réglade
, and
N.
Cerardi
, “
Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control
,”
J. Fluid Mech.
865
,
281
302
(
2019
).
35.
G. Y.
Cornejo Maceda
,
Y.
Li
,
F.
Lusseyran
,
M.
Morzyński
, and
B. R.
Noack
, “
Stabilization of the fluidic pinball with gradient-enriched machine learning control
,”
J. Fluid Mech.
917
,
A42
(
2021
).
36.
G. Y.
Cornejo Maceda
,
F.
Lusseyran
, and
B. R.
Noack
,
xMLC—A Toolkit for Machine Learning Control
(
Universitätsbibliothek der Technischen Universität Braunschweig
,
Germany
,
2022
).
37.
T.
Sonoda
,
Z.
Liu
,
T.
Itoh
, and
Y.
Hasegawa
, “
Reinforcement learning of control strategies for reducing skin friction drag in a fully developed turbulent channel flow
,”
J. Fluid Mech.
960
,
A30
(
2023
).
38.
C.
Vignon
,
J.
Rabault
,
J.
Vasanth
,
F.
Alcántara-Ávila
,
M.
Mortensen
, and
R.
Vinuesa
, “
Effective control of two-dimensional Rayleigh–Bénard convection: Invariant multi-agent reinforcement learning is all you need
,”
Phys. Fluids
35
,
065146
(
2023
).
39.
C.
Vignon
,
J.
Rabault
, and
R.
Vinuesa
, “
Recent advances in applying deep reinforcement learning for flow control: Perspectives and future directions
,”
Phys. Fluids
35
,
031301
(
2023
).
40.
L.
Guastoni
,
J.
Rabault
,
P.
Schlatter
,
H.
Azizpour
, and
R.
Vinuesa
, “
Deep reinforcement learning for turbulent drag reduction in channel flows
,”
Eur. Phys. J. E
46
,
27
(
2023
).
41.
Y.
Li
,
B. R.
Noack
,
T.
Wang
,
G. Y.
Cornejo Maceda
,
E.
Pickering
,
T.
Shaqarin
, and
A.
Tyliszczak
, “
Jet mixing enhancement with Bayesian optimization, deep learning, and persistent data topology
,”
J. Fluid Mech.
991
,
A5
(
2024
).
42.
R.
Deo
,
G.
Nathan
, and
J.
Mi
, “
The influence of nozzle-exit geometric profile on statistical properties of a turbulent plane jet
,”
Exp. Therm. Fluid Sci.
32
,
545
(
2007
).
43.
W. R.
Quinn
, “
Turbulent mixing in a free jet issuing from a low aspect ratio contoured rectangular nozzle
,”
Aeronaut. J.
99
,
337
342
(
1995
).
44.
D.
Fan
and
Y.
Zhou
, “
Scaling and classification of a minijet-manipulated turbulent jet
,”
Phys. Rev. Fluids
7
,
074606
(
2022
).
45.
H.
Yang
and
Y.
Zhou
, “
Axisymmetric jet manipulated using two unsteady minijets
,”
J. Fluid Mech.
808
,
362
396
(
2016
).
46.
T. G.
Malmström
,
A. T.
Kirkpatrick
,
B.
Christensen
, and
K. D.
Knappmiller
, “
Centreline velocity decay measurements in low-velocity axisymmetric jets
,”
J. Fluid Mech.
346
,
363
377
(
1997
).
47.
W.
Quinn
, “
Upstream nozzle shaping effects on near field flow in round turbulent free jets
,”
Eur. J. Mech. B
25
,
279
301
(
2006
).
48.
D.
Fan
,
L.
Yang
,
Z.
Wang
,
M. S.
Triantafyllou
, and
G. E.
Karniadakis
, “
Reinforcement learning for bluff body active flow control in experiments and simulations
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
26091
26098
(
2020
).
49.
J. A.
Nelder
and
R.
Mead
, “
A simplex method for function minimization
,”
Comput. J.
7
,
308
313
(
1965
).
50.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes 3rd Edition: The Art of Scientific Computing
, 3rd ed. (
Cambridge University Press
,
USA
,
2007
).
51.
C.
Bogey
and
C.
Bailly
, “
Large eddy simulations of transitional round jets: Influence of the Reynolds number on flow development and energy dissipation
,”
Phys. Fluids
18
,
065101
(
2006
).
52.
D.
Jung
,
S.
Gamard
, and
W. K.
Geroge
, “
Downstream evolution of the most energetic modes in a turbulent axisymmetric jet at high Reynolds number. Part 1. The near-field region
,”
J. Fluid Mech.
514
,
173
204
(
2004
).
53.
A. K. M. F.
Hussain
and
K. B. M. Q.
Zaman
, “
Vortex pairing in a circular jet under controlled excitation. Part 2. Coherent structure dynamics
,”
J. Fluid Mech.
101
,
493
(
1980
).
54.
M. O.
Iqbal
and
F. O.
Thomas
, “
Coherent structure in a turbulent jet via a vector implementation of the proper orthogonal decomposition
,”
J. Fluid Mech.
571
,
281
326
(
2007
).
55.
A.
Michalke
, “
On the inviscid instability of the hyperbolictangent velocity profile
,”
J. Fluid Mech.
19
,
543
556
(
1964
).
56.
L.
Lesshafft
and
O.
Marquet
, “
Optimal velocity and density profiles for the onset of absolute instability in jets
,”
J. Fluid Mech.
662
,
398
408
(
2010
).
57.
K.
Sasaki
,
A. V. G.
Cavalieri
,
P.
Jordan
,
O. T.
Schmidt
,
T.
Colonius
, and
G. A.
Brès
, “
High-frequency wavepackets in turbulent jets
,”
J. Fluid Mech.
830
,
R2
(
2017
).
58.
V.
Kibens
, “
The limit of initial shear layer influence on jet development
,” AIAA Paper No. 81-1960 (
1981
).
59.
E.
Gutmark
, “
Preferred modes and the spreading rates of jets
,”
Phys. Fluids
26
,
2932
(
1983
).
60.
K.
Knowles
and
A. J.
Saddington
, “
A review of jet mixing enhancement for aircraft propulsion applications
,”
Proc. Inst. Mech. Eng., Part G
220
,
103
127
(
2006
).
61.
D.
Li
,
S.
Zhao
,
A. D.
Ronch
,
J.
Xiang
,
J.
Drofelnik
,
Y.
Li
,
L.
Zhang
,
Y.
Wu
,
M.
Kintscher
,
H. P.
Monner
,
A.
Rudenko
,
S.
Guo
,
W.
Yin
,
J.
Kirn
,
S.
Storm
, and
R. D.
Breuker
, “
A review of modelling and analysis of morphing wings
,”
Prog. Aerosp. Sci.
100
,
46
62
(
2018
).
62.
D.
You
and
P.
Moin
, “
Active control of flow separation over an airfoil using synthetic jets
,”
J. Fluids Struct.
24
,
1349
1357
(
2008
).
63.
K.
Asada
,
Y.
Ninomiya
,
K.
Fujii
, and
A.
Oyama
, “
Airfoil flow experiment on the duty cycle of DBD plasma actuator
,” in
47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition
(
American Institute of Aeronautics and Astronautics
,
2009
).
64.
J.-F.
Beaudoin
and
J.-L.
Aider
, “
Drag and lift reduction of a 3D bluff body using flaps
,”
Exp. Fluids
44
,
491
501
(
2008
).
65.
D.
Veerasamy
,
A. R.
Tajik
,
L.
Pastur
, and
V.
Parezanović
, “
Effect of base blowing by a large-scale fluidic oscillator on the bistable wake behind a flat-back Ahmed body
,”
Phys. Fluids
34
,
035115
(
2022
).
66.
T.
Shaqarin
and
B. R.
Noack
, “
A fast-converging particle swarm optimization through targeted, position-mutated, elitism (PSO-TPME)
,”
Int. J. Comput. Intell. Syst.
16
,
6
(
2023
).
67.
S. L.
Brunton
and
B. R.
Noack
, “
Closed-loop turbulence control: Progress and challenges
,”
Appl. Mech. Rev.
67
,
050801
(
2015
).
68.
R.
Li
,
B. R.
Noack
,
L.
Cordier
,
J.
Borée
, and
F.
Harambat
, “
Drag reduction of a car model by linear genetic programming control
,”
Exp. Fluids
58
,
103
(
2017
).
69.
K.
Bieker
,
S.
Peitz
,
S. L.
Brunton
,
J. N.
Kutz
, and
M.
Dellnitz
, “
Deep model predictive flow control with limited sensor data and online learning
,”
Theor. Comput. Fluid Dyn.
34
,
577
591
(
2020
).
70.
G. Y.
Cornejo Maceda
,
E.
Varon
,
F.
Lusseyran
, and
B. R.
Noack
, “
Stabilization of a multi-frequency open cavity flow with gradient-enriched machine learning control
,”
J. Fluid Mech.
955
(
A20
),
A20
(
2023
).
You do not currently have access to this content.